Anticancer effect of novel luteolin capped gold nanoparticles selectively cytotoxic towards human cervical adenocarcinoma HeLa cells: An in vitro approach. 2023

Ivana Z Matić, and Ana Mraković, and Zlatko Rakočević, and Milovan Stoiljković, and Vladimir B Pavlović, and Tatjana Momić
Institute for Oncology and Radiology of Serbia, Belgrade, Serbia.

BACKGROUND Although luteolin has been confirmed as potent anticancer agent, its potential application as therapeutic is limited by its water solubility. To overcome this shortcoming nanoparticle technology approach was applied. Owing to their proven low toxicity and the possibility to be easily functionalized gold nanoparticles (AuNP) were the nanosystem of choice used in this study. Novel luteolin capped gold nanoparticles (AuNPL) were synthesized and their anticancer effect towards human cervical adenocarcinoma HeLa cells was investigated in vitro. METHODS AuNPL were synthesized by reducing chloroauric acid by trisodium citrate with subsequent addition of luteoline during synthesis and their physicochemical characterization was done. AuNPL cytotoxicity against HeLa, human malignant melanoma A375, and normal human keratinocytes HaCaT cells was tested by MTT cell survival assay, and their IC50 values were determined. The capability of AuNPL to induce cell cycle arrest and apoptosis in HeLa cells were demonstrated by flow cytometry. The antioxidant activity of AuNPL was assessed by DPPH· and ABTS·+ scavenging assays. Cytoprotective properties of AuNPL towards HaCaT cells were examined by measuring the physiological and H2O2 induced intracellular reactive oxygen species (ROS) levels using flow cytometry. Also, genotoxicity of AuNPL in HaCaT cells was investigated by the single cell alkaline comet assay. RESULTS Spherical AuNPL, stable in aqueous solution up to six months at 4 °C were obtained in the synthesis. The selectivity in the cytotoxic action of AuNPL on HeLa and A375 cancer cells compared with their cytotoxicity on normal keratinocytes HaCaT was observed. AuNPL exerted their cytotoxic activity against HeLa cells through accumulation of the cells in the subG1 phase of the cell cycle, inducing the apoptotic cell death mediated by the activation of caspase-3 - 8, and - 9. AuNPL antioxidative potential was confirmed by DPPH· and ABTS·+ scavenging assays. IC50 concentration of AuNPL exerted cytoprotective effect against HaCaT cells by the significant reduction of the physiological intracellular ROS level. Additionally, AuNPL were shown as more cytoprotective towards HaCaT cells then luteolin due to the more successful elimination of H2O2 induced intracellular ROS. Moreover, nontoxic concentrations of AuNPL did not cause considerable DNA damage of HaCaT cells, indicating low genotoxicity of the nanoparticles. CONCLUSIONS Synthesized AuNPL showed selective cytotoxic activity against HeLa cells, while being nontoxic and cytoprotective against HaCaT cells. The observed findings encourage further investigation of AuNPL as a promising novel anticancer agent.

UI MeSH Term Description Entries
D006046 Gold A yellow metallic element with the atomic symbol Au, atomic number 79, and atomic weight 197. It is used in jewelry, goldplating of other metals, as currency, and in dental restoration. Many of its clinical applications, such as ANTIRHEUMATIC AGENTS, are in the form of its salts.
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000230 Adenocarcinoma A malignant epithelial tumor with a glandular organization. Adenocarcinoma, Basal Cell,Adenocarcinoma, Granular Cell,Adenocarcinoma, Oxyphilic,Adenocarcinoma, Tubular,Adenoma, Malignant,Carcinoma, Cribriform,Carcinoma, Granular Cell,Carcinoma, Tubular,Adenocarcinomas,Adenocarcinomas, Basal Cell,Adenocarcinomas, Granular Cell,Adenocarcinomas, Oxyphilic,Adenocarcinomas, Tubular,Adenomas, Malignant,Basal Cell Adenocarcinoma,Basal Cell Adenocarcinomas,Carcinomas, Cribriform,Carcinomas, Granular Cell,Carcinomas, Tubular,Cribriform Carcinoma,Cribriform Carcinomas,Granular Cell Adenocarcinoma,Granular Cell Adenocarcinomas,Granular Cell Carcinoma,Granular Cell Carcinomas,Malignant Adenoma,Malignant Adenomas,Oxyphilic Adenocarcinoma,Oxyphilic Adenocarcinomas,Tubular Adenocarcinoma,Tubular Adenocarcinomas,Tubular Carcinoma,Tubular Carcinomas
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D047311 Luteolin 5,7,3',4'-tetrahydroxy-flavone, one of the FLAVONES. 3',4',5,7-Tetrahydroxy-Flavone,3',4',5,7-Tetrahydroxyflavone,Luteoline

Related Publications

Ivana Z Matić, and Ana Mraković, and Zlatko Rakočević, and Milovan Stoiljković, and Vladimir B Pavlović, and Tatjana Momić
May 2011, International journal of pharmaceutics,
Ivana Z Matić, and Ana Mraković, and Zlatko Rakočević, and Milovan Stoiljković, and Vladimir B Pavlović, and Tatjana Momić
January 1990, Anticancer research,
Ivana Z Matić, and Ana Mraković, and Zlatko Rakočević, and Milovan Stoiljković, and Vladimir B Pavlović, and Tatjana Momić
April 2014, Natural product communications,
Ivana Z Matić, and Ana Mraković, and Zlatko Rakočević, and Milovan Stoiljković, and Vladimir B Pavlović, and Tatjana Momić
September 2019, Analytical biochemistry,
Ivana Z Matić, and Ana Mraković, and Zlatko Rakočević, and Milovan Stoiljković, and Vladimir B Pavlović, and Tatjana Momić
November 2021, Nanomaterials (Basel, Switzerland),
Ivana Z Matić, and Ana Mraković, and Zlatko Rakočević, and Milovan Stoiljković, and Vladimir B Pavlović, and Tatjana Momić
September 2019, Journal of Korean medical science,
Ivana Z Matić, and Ana Mraković, and Zlatko Rakočević, and Milovan Stoiljković, and Vladimir B Pavlović, and Tatjana Momić
August 2020, Molecular biology reports,
Ivana Z Matić, and Ana Mraković, and Zlatko Rakočević, and Milovan Stoiljković, and Vladimir B Pavlović, and Tatjana Momić
February 2018, Scientific reports,
Ivana Z Matić, and Ana Mraković, and Zlatko Rakočević, and Milovan Stoiljković, and Vladimir B Pavlović, and Tatjana Momić
July 2010, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
Ivana Z Matić, and Ana Mraković, and Zlatko Rakočević, and Milovan Stoiljković, and Vladimir B Pavlović, and Tatjana Momić
April 2010, Journal of biomedical nanotechnology,
Copied contents to your clipboard!