Involvement of long-chain acyl CoA in the antagonistic effects of halothane and L-carnitine on mitochondrial energy-linked processes. 1986

D Branca, and A Toninello, and G Scutari, and M Florian, and N Siliprandi, and E Vincenti, and G P Giron

Incubation of rat liver mitochondria in the presence of halothane induced a consistent impairment of mitochondrial oxidative phosphorylation without significantly affecting the steady-state of transmembrane electrical potential. These alterations of mitochondrial energy-linked processes were associated with a consistent accumulation of long-chain acyl CoA. Addition of L-carnitine partially prevented the effects of halothane on oxidative phosphorylation and completely abolished the halothane-induced long-chain acyl CoA accumulation. The possibility is discussed that the damaging action of halothane on mitochondrial functions might be partially ascribed to the noxious action of the excess of long-chain acyl CoA induced the anesthetic.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002331 Carnitine A constituent of STRIATED MUSCLE and LIVER. It is an amino acid derivative and an essential cofactor for fatty acid metabolism. Bicarnesine,L-Carnitine,Levocarnitine,Vitamin BT,L Carnitine
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan
D000214 Acyl Coenzyme A S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation. Acyl CoA,Fatty Acyl CoA,Long-Chain Acyl CoA,Acyl CoA, Fatty,Acyl CoA, Long-Chain,CoA, Acyl,CoA, Fatty Acyl,CoA, Long-Chain Acyl,Coenzyme A, Acyl,Long Chain Acyl CoA
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D Branca, and A Toninello, and G Scutari, and M Florian, and N Siliprandi, and E Vincenti, and G P Giron
February 1989, Biochimica et biophysica acta,
D Branca, and A Toninello, and G Scutari, and M Florian, and N Siliprandi, and E Vincenti, and G P Giron
November 1988, Japanese heart journal,
D Branca, and A Toninello, and G Scutari, and M Florian, and N Siliprandi, and E Vincenti, and G P Giron
December 1976, Journal of bioenergetics and biomembranes,
D Branca, and A Toninello, and G Scutari, and M Florian, and N Siliprandi, and E Vincenti, and G P Giron
January 1989, Journal of inherited metabolic disease,
D Branca, and A Toninello, and G Scutari, and M Florian, and N Siliprandi, and E Vincenti, and G P Giron
November 2009, Mini reviews in medicinal chemistry,
D Branca, and A Toninello, and G Scutari, and M Florian, and N Siliprandi, and E Vincenti, and G P Giron
June 1998, Journal of inherited metabolic disease,
D Branca, and A Toninello, and G Scutari, and M Florian, and N Siliprandi, and E Vincenti, and G P Giron
April 1994, Journal of molecular and cellular cardiology,
D Branca, and A Toninello, and G Scutari, and M Florian, and N Siliprandi, and E Vincenti, and G P Giron
March 1998, The American journal of clinical nutrition,
D Branca, and A Toninello, and G Scutari, and M Florian, and N Siliprandi, and E Vincenti, and G P Giron
August 1994, The American journal of physiology,
D Branca, and A Toninello, and G Scutari, and M Florian, and N Siliprandi, and E Vincenti, and G P Giron
July 1982, Japanese heart journal,
Copied contents to your clipboard!