A steroid anesthetic prolongs inhibitory postsynaptic currents in cultured rat hippocampal neurons. 1987

N L Harrison, and S Vicini, and J L Barker

Whole-cell patch-clamp recordings were made from cultured rat hippocampal neurons to examine the effects of the steroidal general anesthetic alphaxalone (3 alpha-hydroxy 5 alpha-pregnane 11,20-dione) on responses to pharmacologically applied and physiologically released GABA. At low micromolar concentrations in the anesthetic range, alphaxalone potentiated Cl- conductance responses elicited by GABA and also prolonged evoked GABA-mediated postsynaptic potentials. Under voltage clamp at -40 mV, rapid outwardly directed synaptic currents were evoked that decayed with single exponential kinetics; mean decay time constant was 24 msec at room temperature. Alphaxalone prolonged the decay of these inhibitory postsynaptic currents by 5- to 8-fold, with no increase in peak amplitude or change in growth time. This substantial prolongation of GABA-mediated inhibitory synaptic conductance at clinically effective concentrations may contribute significantly to the anesthetic activity of alphaxalone.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D011277 Pregnanediones Pregnane derivatives in which two side-chain methyl groups or two methylene groups in the ring skeleton (or a combination thereof) have been oxidized to keto groups. Diketopregnanes,Dioxopregnanes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000777 Anesthetics Agents capable of inducing a total or partial loss of sensation, especially tactile sensation and pain. They may act to induce general ANESTHESIA, in which an unconscious state is achieved, or may act locally to induce numbness or lack of sensation at a targeted site. Anesthetic,Anesthetic Agents,Anesthetic Drugs,Anesthetic Effect,Anesthetic Effects,Agents, Anesthetic,Drugs, Anesthetic,Effect, Anesthetic,Effects, Anesthetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

N L Harrison, and S Vicini, and J L Barker
September 1988, The Journal of physiology,
N L Harrison, and S Vicini, and J L Barker
December 1992, The Journal of physiology,
N L Harrison, and S Vicini, and J L Barker
October 1993, Journal of neurophysiology,
N L Harrison, and S Vicini, and J L Barker
November 1996, Journal of neurophysiology,
N L Harrison, and S Vicini, and J L Barker
November 2001, Neuroscience letters,
N L Harrison, and S Vicini, and J L Barker
January 1990, Neuroscience,
N L Harrison, and S Vicini, and J L Barker
May 1992, Molecular pharmacology,
Copied contents to your clipboard!