Colocalization of neuropeptide Y immunoreactivity in brainstem catecholaminergic neurons that project to the paraventricular nucleus of the hypothalamus. 1985

P E Sawchenko, and L W Swanson, and R Grzanna, and P R Howe, and S R Bloom, and J M Polak

Immunohistochemical methods were used in the rat to plot the distribution of neuropeptide Y (NPY) immunoreactivity in the paraventricular (PVH) and supraoptic (SO) nuclei of the hypothalamus, and a combined retrograde transport-double immunohistochemical labeling technique was used to determine the extent to which NPY immunoreactivity is coexpressed in brainstem cell groups that stain with antisera to phenylethanolamine-N-methyltransferase (PNMT; a marker for adrenergic neurons) or dopamine-beta-hydroxylase (DBH; a marker for adrenergic and noradrenergic neurons) and also project to the PVH. The results confirm the existence of a major NPY-immunoreactive pathway that is in a position to influence each major class of output neurons in the PVH. Thus, most parts of the parvicellular division receive a dense input that is similar to, though somewhat more extensive than, the one stained by DBH antisera. However, in the magnocellular division catecholaminergic inputs are preferentially associated with vasopressinergic neurons, while NPY-stained fibers tend to be more evenly distributed in regions containing both oxytocinergic and vasopressingergic neurons, and their density appear to be lower than that of DBH-stained fibers. In the SO, only a moderate NPY-stained input was apparent, while, as described previously, DBH-immunoreactive fibers are rather dense and are preferentially distributed in vasopressinergic regions of the nucleus. The results of combined retrograde transport-double immunohistochemical labeling experiments may be summarized as follows: the vast majority of cells in the medulla that were retrogradely labeled after discrete implants of the fluorescent tracer true blue into the PVH, and were PNMT-immunoreactive, also stained for NPY. However, less extensive co-localization was detected in noradrenergic cell groups of the caudal medulla. About 60% of the retrogradely labeled-DBH positive cells in the A1 cell group were also NPY-positive, while those in the caudal part of the nucleus of the solitary tract (the A2 cell group) usually failed to stain with anti-NPY. Similarly, in the locus coeruleus (the A6 cell group) where virtually all retrogradely labeled neurons were DBH-positive, only rarely were triply labeled cells detected. These results suggest that NPY immunoreactivity is extensively co-contained within adrenergic neurons of the C1, C2, and C3 groups that project to the PVH, while the correspondence in noradrenergic cell groups is less complete, and generally limited to a subset of neurons in the A1 cell group.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D010286 Paraventricular Hypothalamic Nucleus Nucleus in the anterior part of the HYPOTHALAMUS. Hypothalamic Paraventricular Nucleus,Paraventricular Nucleus,Hypothalamic Nucleus, Paraventricular,Nucleus, Hypothalamic Paraventricular,Nucleus, Paraventricular,Nucleus, Paraventricular Hypothalamic,Paraventricular Nucleus, Hypothalamic
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D000320 Adrenergic Fibers Nerve fibers liberating catecholamines at a synapse after an impulse. Sympathetic Fibers,Adrenergic Fiber,Fiber, Adrenergic,Fiber, Sympathetic,Fibers, Adrenergic,Fibers, Sympathetic,Sympathetic Fiber
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P E Sawchenko, and L W Swanson, and R Grzanna, and P R Howe, and S R Bloom, and J M Polak
September 1998, Regulatory peptides,
P E Sawchenko, and L W Swanson, and R Grzanna, and P R Howe, and S R Bloom, and J M Polak
August 1997, The Journal of comparative neurology,
P E Sawchenko, and L W Swanson, and R Grzanna, and P R Howe, and S R Bloom, and J M Polak
December 1988, Brain research,
P E Sawchenko, and L W Swanson, and R Grzanna, and P R Howe, and S R Bloom, and J M Polak
December 1995, Brain research. Molecular brain research,
P E Sawchenko, and L W Swanson, and R Grzanna, and P R Howe, and S R Bloom, and J M Polak
August 2007, The Journal of comparative neurology,
P E Sawchenko, and L W Swanson, and R Grzanna, and P R Howe, and S R Bloom, and J M Polak
September 1995, The Journal of comparative neurology,
P E Sawchenko, and L W Swanson, and R Grzanna, and P R Howe, and S R Bloom, and J M Polak
September 1989, Neuroscience letters,
P E Sawchenko, and L W Swanson, and R Grzanna, and P R Howe, and S R Bloom, and J M Polak
March 1989, The Journal of comparative neurology,
P E Sawchenko, and L W Swanson, and R Grzanna, and P R Howe, and S R Bloom, and J M Polak
May 1990, Brain research,
P E Sawchenko, and L W Swanson, and R Grzanna, and P R Howe, and S R Bloom, and J M Polak
September 2012, Brain research bulletin,
Copied contents to your clipboard!