Activation by hypotension of neurons in the hypothalamic paraventricular nucleus that project to the brainstem. 1997

T L Krukoff, and D Mactavish, and J H Jhamandas
Department of Cell Biology and Anatomy, Faculty of Medicine, University of Alberta, Edmonton, Canada. tkrukoff@anat.med.ualberta.ca

To investigate the involvement of neuronal nitric oxide (NO) in the response of the brain to changes in blood pressure, we studied the activation of putative NO-producing neurons in the paraventricular nucleus of the hypothalamus (PVN) in rats whose mean arterial pressures (MAPs) were decreased by 40-50% with hemorrhage (HEM) or infusion of sodium nitroprusside (NP). Activation was assessed on the basis of expression of the immediate early gene, c-fos; putative NO-producing neurons were identified with the histochemical stain for nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d); and the proportions of neurons projecting to the nucleus of the tractus solitarius (NTS) and/or caudal ventrolateral medulla (CVLM) were determined with retrograde tracing techniques. No differences were found for results obtained from HEM and NP animals. Three to four percent of activated PVN neurons projected to the NTS or CVLM. Conversely, approximately 33% and 16% of neurons projecting to the NTS and CVLM, respectively, were activated. About 43% of NADPH-d neurons in the PVN were activated. Of PVN neurons projecting to the NTS or CVLM, 38% and 32%, respectively, were NADPH-d positive. About 11% of NADPH-d PVN neurons projected to the NTS or CVLM. An average of 3 NADPH-d neurons per section were activated and projected to either target. Finally, 7 PVN cells per section sent collateral branches to the NTS and CVLM; 2 or 3 of these cells per section were also activated by decreases in arterial pressure. No NADPH-d cells were found that sent collateral branches to the NTS and CVLM. This study shows that decreases in MAP activate PVN neurons that project, singly and through collaterals, to the NTS and CVLM. A relatively high proportion of the singly projecting neurons is NADPH-d positive. These results support the contention that descending projections from the PVN to the brainstem play an important role in the physiological response to decreases in arterial pressure and suggest that NO may participate in this response.

UI MeSH Term Description Entries
D007022 Hypotension Abnormally low BLOOD PRESSURE that can result in inadequate blood flow to the brain and other vital organs. Common symptom is DIZZINESS but greater negative impacts on the body occur when there is prolonged depravation of oxygen and nutrients. Blood Pressure, Low,Hypotension, Vascular,Low Blood Pressure,Vascular Hypotension
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D009599 Nitroprusside A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins. Nitroferricyanide,Sodium Nitroprusside,Cyanonitrosylferrate,Ketostix,Naniprus,Nipride,Nipruton,Nitriate,Nitropress,Nitroprussiat Fides,Nitroprusside, Disodium Salt,Nitroprusside, Disodium Salt, Dihydrate,Disodium Salt Nitroprusside,Nitroprusside, Sodium
D010286 Paraventricular Hypothalamic Nucleus Nucleus in the anterior part of the HYPOTHALAMUS. Hypothalamic Paraventricular Nucleus,Paraventricular Nucleus,Hypothalamic Nucleus, Paraventricular,Nucleus, Hypothalamic Paraventricular,Nucleus, Paraventricular,Nucleus, Paraventricular Hypothalamic,Paraventricular Nucleus, Hypothalamic
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014665 Vasodilator Agents Drugs used to cause dilation of the blood vessels. Vasoactive Antagonists,Vasodilator,Vasodilator Agent,Vasodilator Drug,Vasorelaxant,Vasodilator Drugs,Vasodilators,Vasorelaxants,Agent, Vasodilator,Agents, Vasodilator,Antagonists, Vasoactive,Drug, Vasodilator,Drugs, Vasodilator

Related Publications

T L Krukoff, and D Mactavish, and J H Jhamandas
October 1996, The Journal of comparative neurology,
T L Krukoff, and D Mactavish, and J H Jhamandas
May 2010, The Journal of comparative neurology,
T L Krukoff, and D Mactavish, and J H Jhamandas
April 2001, The Journal of comparative neurology,
T L Krukoff, and D Mactavish, and J H Jhamandas
November 1997, Brain research,
Copied contents to your clipboard!