Posttranslational regulation of repressible acid phosphatase in yeast. 1979

M E Schweingruber, and A M Schweingruber

On the basis of genetic data it has been suggested that repressible acid phosphatase of Saccharomyces cerevisiae is regulated by a control circuit involving operator-repressor mechanisms (Toh-e et al., 1978). We measured no significant difference in the amount of translatable mRNA of repressed and derepressed cells in the reticulocyte in vitro translation system. We find a 25 fold difference in specific enzyme activity in repressed versus derepressed cells whereas the amount of 35S-methionine labelled enzyme protein as measured by antibody precipitation varies only 2-3 fold. This argues for posttranslational regulation of preexisting inactive acid phosphatase. Minor regulatory effects at the transcriptional or translational level cannot be excluded.

UI MeSH Term Description Entries
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D000135 Acid Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.2. Acid beta-Glycerophosphatase,Acid beta Glycerophosphatase
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

M E Schweingruber, and A M Schweingruber
August 1985, Molecular and cellular biology,
M E Schweingruber, and A M Schweingruber
September 1984, Genetics,
M E Schweingruber, and A M Schweingruber
August 1980, Proceedings of the National Academy of Sciences of the United States of America,
M E Schweingruber, and A M Schweingruber
September 1986, Biochemical and biophysical research communications,
M E Schweingruber, and A M Schweingruber
April 1967, Biochemical and biophysical research communications,
M E Schweingruber, and A M Schweingruber
June 1985, Biochemical and biophysical research communications,
M E Schweingruber, and A M Schweingruber
January 1973, Texas reports on biology and medicine,
M E Schweingruber, and A M Schweingruber
November 1989, Journal of cell science,
Copied contents to your clipboard!