Effects of projection and background correction method upon calculation of right ventricular ejection fraction using first-pass radionuclide angiography. 1985

J L Caplin, and W D Flatman, and D S Dymond

There is no consensus as to the best projection or correction method for first-pass radionuclide studies of the right ventricle. We assessed the effects of two commonly used projections, 30 degrees right anterior oblique and anterior-posterior, on the calculation of right ventricular ejection fraction. In addition two background correction methods, planar background correction to account for scatter, and right atrial correction to account for right atrio-ventricular overlap were assessed. Two first-pass radionuclide angiograms were performed in 19 subjects, one in each projection, using gold-195m (half-life 30.5 seconds), and each study was analysed using the two methods of correction. Right ventricular ejection fraction was highest using the right anterior oblique projection with right atrial correction 35.6 +/- 12.5% (mean +/- SD), and lowest when using the anterior posterior projection with planar background correction 26.2 +/- 11% (p less than 0.001). The study design allowed assessment of the effects of correction method and projection independently. Correction method appeared to have relatively little effect on right ventricular ejection fraction. Using right atrial correction correlation coefficient (r) between projections was 0.92, and for planar background correction r = 0.76, both p less than 0.001. However, right ventricular ejection fraction was far more dependent upon projection. When the anterior-posterior projection was used calculated right ventricular ejection fraction was much more dependent on correction method (r = 0.65, p = not significant), than using the right anterior oblique projection (r = 0.85, p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011875 Radionuclide Angiography The measurement of visualization by radiation of any organ after a radionuclide has been injected into its blood supply. It is used to diagnose heart, liver, lung, and other diseases and to measure the function of those organs, except renography, for which RADIOISOTOPE RENOGRAPHY is available. Angiography, Radionuclide,Radioisotope Angiography,Angiography, Radioisotope,Angiographies, Radioisotope,Angiographies, Radionuclide,Radioisotope Angiographies,Radionuclide Angiographies
D005260 Female Females
D006050 Gold Radioisotopes Unstable isotopes of gold that decay or disintegrate emitting radiation. Au 185-196, 198-201, and 203 are radioactive gold isotopes. Radioisotopes, Gold
D006331 Heart Diseases Pathological conditions involving the HEART including its structural and functional abnormalities. Cardiac Disorders,Heart Disorders,Cardiac Diseases,Cardiac Disease,Cardiac Disorder,Heart Disease,Heart Disorder
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D001417 Background Radiation Radiation from sources other than the source of interest. It is due to cosmic rays and natural radioactivity in the environment. Natural Radiation,Radiation, Background,Radiation, Natural,Background Radiations,Natural Radiations,Radiations, Background,Radiations, Natural
D013318 Stroke Volume The amount of BLOOD pumped out of the HEART per beat, not to be confused with cardiac output (volume/time). It is calculated as the difference between the end-diastolic volume and the end-systolic volume. Ventricular Ejection Fraction,Ventricular End-Diastolic Volume,Ventricular End-Systolic Volume,Ejection Fraction, Ventricular,Ejection Fractions, Ventricular,End-Diastolic Volume, Ventricular,End-Diastolic Volumes, Ventricular,End-Systolic Volume, Ventricular,End-Systolic Volumes, Ventricular,Fraction, Ventricular Ejection,Fractions, Ventricular Ejection,Stroke Volumes,Ventricular Ejection Fractions,Ventricular End Diastolic Volume,Ventricular End Systolic Volume,Ventricular End-Diastolic Volumes,Ventricular End-Systolic Volumes,Volume, Stroke,Volume, Ventricular End-Diastolic,Volume, Ventricular End-Systolic,Volumes, Stroke,Volumes, Ventricular End-Diastolic,Volumes, Ventricular End-Systolic

Related Publications

J L Caplin, and W D Flatman, and D S Dymond
July 1984, Japanese heart journal,
J L Caplin, and W D Flatman, and D S Dymond
August 1981, Kaku igaku. The Japanese journal of nuclear medicine,
J L Caplin, and W D Flatman, and D S Dymond
January 1978, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
J L Caplin, and W D Flatman, and D S Dymond
January 1986, Kaku igaku. The Japanese journal of nuclear medicine,
J L Caplin, and W D Flatman, and D S Dymond
March 1981, The American journal of cardiology,
J L Caplin, and W D Flatman, and D S Dymond
April 2018, Journal of the Chinese Medical Association : JCMA,
Copied contents to your clipboard!