Intracellular metabolism and enzymatic phosphorylation of 9-(1,3-dihydroxy-2-propoxymethyl)guanine and acyclovir in herpes simplex virus-infected and uninfected cells. 1985

D F Smee, and R Boehme, and M Chernow, and B P Binko, and T R Matthews

The antiherpes agent 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG) is a much more potent inhibitor of herpes simplex viruses in vivo than acyclovir, yet both are equally active in vitro against these viruses. To explain this difference, studies were conducted to compare the intracellular metabolism and enzymatic phosphorylation of the two compounds. In herpes type 1 and type 2 infected cells, the levels of DHPG triphosphate were only about 2-fold greater than levels of acyclovir triphosphate at virus-inhibitory concentrations (less than or equal to microM). At concentrations greater than 2.5 microM in herpes type 1 but not in type 2 infected cells, acyclovir phosphorylation was inhibited relative to that of DHPG. When drug was removed after 6 hr from infected cells, acyclovir triphosphate rapidly degraded to acyclovir and was excreted into the culture medium. In contrast, DHPG triphosphate persisted at 60-70% of the original level for 18 hr after drug removal, and DHPG excretion from cells was very slow. This finding could be a key factor to the superior potency of DHPG in animals, despite the fact that blood levels of both compounds fall rapidly after dosing. In uninfected cells, low levels of DHPG and acyclovir triphosphates were produced at 100 microM concentrations. Phosphorylation of DHPG to mono-, di- and triphosphates by purified viral and cell enzymes was more rapid than that of acyclovir. However, acyclovir triphosphate was a much more potent inhibitor of herpes virus and cell DNA polymerases.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D006561 Herpes Simplex A group of acute infections caused by herpes simplex virus type 1 or type 2 that is characterized by the development of one or more small fluid-filled vesicles with a raised erythematous base on the skin or mucous membrane. It occurs as a primary infection or recurs due to a reactivation of a latent infection. (Dorland, 27th ed.) Herpes Simplex Virus Infection
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000212 Acyclovir A GUANOSINE analog that acts as an antimetabolite. Viruses are especially susceptible. Used especially against herpes. Acycloguanosine,9-((2-Hydroxyethoxy)methyl)guanine,Aci-Sanorania,Acic,Aciclobeta,Aciclostad,Aciclovir,Aciclovir Alonga,Aciclovir-Sanorania,Acifur,Acipen Solutab,Acivir,Activir,Acyclo-V,Acyclovir Sodium,Antiherpes Creme,Avirax,Cicloferon,Clonorax,Cusiviral,Genvir,Herpetad,Herpofug,Herpotern,Herpoviric,Isavir,Laciken,Mapox,Maynar,Milavir,Opthavir,Supraviran,Viclovir,Vipral,Virax-Puren,Virherpes,Virmen,Virolex,Virupos,Virzin,Wellcome-248U,Zoliparin,Zovirax,Zyclir,aciclovir von ct,Aci Sanorania,Aciclovir Sanorania,Acyclo V,Alonga, Aciclovir,Sodium, Acyclovir,Solutab, Acipen,Virax Puren,ViraxPuren,Wellcome 248U,Wellcome248U
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D F Smee, and R Boehme, and M Chernow, and B P Binko, and T R Matthews
October 1983, The Journal of biological chemistry,
D F Smee, and R Boehme, and M Chernow, and B P Binko, and T R Matthews
February 1984, The Journal of biological chemistry,
D F Smee, and R Boehme, and M Chernow, and B P Binko, and T R Matthews
February 1987, Antimicrobial agents and chemotherapy,
D F Smee, and R Boehme, and M Chernow, and B P Binko, and T R Matthews
January 1987, Current eye research,
D F Smee, and R Boehme, and M Chernow, and B P Binko, and T R Matthews
September 1984, Antimicrobial agents and chemotherapy,
D F Smee, and R Boehme, and M Chernow, and B P Binko, and T R Matthews
January 1989, Yao xue xue bao = Acta pharmaceutica Sinica,
D F Smee, and R Boehme, and M Chernow, and B P Binko, and T R Matthews
October 1985, Antiviral research,
D F Smee, and R Boehme, and M Chernow, and B P Binko, and T R Matthews
August 1986, Annals of internal medicine,
D F Smee, and R Boehme, and M Chernow, and B P Binko, and T R Matthews
June 1987, The Journal of general virology,
Copied contents to your clipboard!