Role of phorbol ester receptors in the 12-0-tetradecanoyl-phorbol-13-acetate (TPA)-induced down-regulation of colony-stimulating factor (CSF-1) binding to murine peritoneal exudate macrophages. 1985

B D Chen, and K L Wilkins

Treatment of murine peritoneal exudate macrophages (PEM) by tumor-promoting phorbol esters (TPA) results in a rapid loss of binding activity to radioactive-labeled colony-stimulating factor ([125I]-CSF-1) on the cell surface. The inhibitory effect of TPA on PEM is transient; treated cells recover full [125I]-CSF-1 binding activity in less than 6 hr at 37 degrees C either in the presence or after the removal of added TPA. The role of phorbol ester receptors in the induction of [125I]-CSF-1 binding inhibition was studied. The biologically active ligand [3H]-phorbol 12,13-dibutyrate ([3H]-PDBu) bound specifically to cultured murine PEM. At 0 degree C, stable and equilibrium binding occurred after 2-3 hr. Scatchard analysis revealed linear plots with a dissociation constant and receptor number per cell of 20.9 nM and 3.9 X 10(5)/cell, respectively. Treatment of PEM with biologically active phorbol esters at 37 degrees C rapidly inhibited the binding activity of [3H]-PDBu on cell surface (down-regulation) and rendered these cells refractory to the TPA-induced [125I]-CSF-1 binding inhibition by the subsequent TPA treatment. The inhibition of phorbol ester binding activity on TPA-treated PEM is caused by a reduction in the total number of available phorbol ester receptors rather than by a decrease in receptor affinity as judged by Scatchard analysis. The disappearance of [3H]-PDBu binding activity is reversible and transient. However, unlike CSF-1 receptors the restoration of phorbol ester receptors on TPA-treated PEM is a very slow process; a prolonged incubation of up to 72 hr after the removal of TPA was required for PEM to regain fully its [3H]-PDBu binding activity. Furthermore, the degree of TPA-induced CSF-1-receptor down-regulation is closely associated with the number of available phorbol ester receptors present on PEM at the time of treatment. Thus, the refractoriness to TPA diminished as the phorbol ester receptors on PEM recovered. A 72-hr incubation time at 37 degrees C was needed for PEM to lose their refractoriness and again become fully sensitive to TPA-induced CSF-1-receptor down-regulation. This study provides evidence that the loss of CSF-1-receptors induced by TPA treatment requires the presence of phorbol ester receptors and proceeds presumably via a co-internalization of both CSF-1 and phorbol ester receptors; the refractoriness to TPA is thereby induced by a transient loss of available phorbol ester receptors.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D010703 Phorbol Esters Tumor-promoting compounds obtained from CROTON OIL (Croton tiglium). Some of these are used in cell biological experiments as activators of protein kinase C. Phorbol Diester,Phorbol Ester,Phorbol Diesters,Diester, Phorbol,Diesters, Phorbol,Ester, Phorbol,Esters, Phorbol
D010704 Phorbols The parent alcohol of the tumor promoting compounds from CROTON OIL (Croton tiglium). Tigliane,Tiglianes
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003115 Colony-Stimulating Factors Glycoproteins found in a subfraction of normal mammalian plasma and urine. They stimulate the proliferation of bone marrow cells in agar cultures and the formation of colonies of granulocytes and/or macrophages. The factors include INTERLEUKIN-3; (IL-3); GRANULOCYTE COLONY-STIMULATING FACTOR; (G-CSF); MACROPHAGE COLONY-STIMULATING FACTOR; (M-CSF); and GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR; (GM-CSF). MGI-1,Macrophage-Granulocyte Inducer,Colony Stimulating Factor,Colony-Stimulating Factor,MGI-1 Protein,Myeloid Cell-Growth Inducer,Protein Inducer MGI,Cell-Growth Inducer, Myeloid,Colony Stimulating Factors,Inducer, Macrophage-Granulocyte,Inducer, Myeloid Cell-Growth,MGI 1 Protein,MGI, Protein Inducer,Macrophage Granulocyte Inducer,Myeloid Cell Growth Inducer
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B D Chen, and K L Wilkins
December 1980, Clinical immunology and immunopathology,
B D Chen, and K L Wilkins
May 1983, Journal of immunology (Baltimore, Md. : 1950),
B D Chen, and K L Wilkins
June 1974, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
B D Chen, and K L Wilkins
January 1984, Experimental cell biology,
Copied contents to your clipboard!