Reduction of lethal graft-versus-host disease: transplantation of cultured murine bone marrow across minor histocompatibility differences. 1985

P Mauch, and J M Lipton, and B L Hamilton, and J Obbagy, and D Nathan, and S Hellman

The murine bone marrow culture technique was used to prepare donor marrow for bone marrow transplantation across minor histocompatibility complex differences. Previous studies have shown that theta-positive cells are rapidly lost from such cultures and that transplantation of cultured marrow across major histocompatibility complex differences results in a delay in the development of lethal graft-v-host disease (GVHD). In this study, a total of 1 to 2 X 10(7) nonadherent cells (740 to 1560 CFUs [colony-forming units]) from three-day-old cultures were used as a source of donor marrow. Three strain combinations were evaluated; LP/J into C57BL/6; BIO.BR into CBA/J; and C57BL/6 into LP/J. Donor mice were immunized with recipient spleen cells prior to culture in order to increase the graft-v-host response. For LP/J marrow into C57BL/6 mice, 5 X 10(7) donor spleen cells transplanted along with the marrow were needed to induce lethal GVHD. However, lethal GVHD was seen without the addition of spleen cells for BIO.BR into CBA/J and C57BL/6 into LP/J strain combinations. Most animals receiving fresh marrow were dead of GVHD five weeks after transplantation. With the use of cultured marrow the three-month survival was 80%, 51%, and 93%, respectively, for LP/J into C57BL/6, BIO.BR into CBA/J, and C57BL/6 into LP/J strain combinations. Long-term donor engraftment in all recipient animals receiving cultured marrow was confirmed by analyzing hemoglobin polymorphisms between the strain combinations. These results demonstrate that in contrast to transplantation across major histocompatibility complex differences, the use of cultured cells for bone marrow transplantation across minor histocompatibility complex differences allows for engraftment while reducing the risk of lethal GVHD.

UI MeSH Term Description Entries
D008297 Male Males
D008805 Mice, Inbred A An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. Mouse, Inbred A,Inbred A Mice,Inbred A Mouse
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008912 Minor Histocompatibility Loci Genetic loci responsible for the encoding of histocompatibility antigens other than those encoded by the MAJOR HISTOCOMPATIBILITY COMPLEX. The antigens encoded by these genes are often responsible for graft rejection in cases where histocompatibility has been established by standard tests. The location of some of these loci on the X and Y chromosomes explains why grafts from males to females may be rejected while grafts from females to males are accepted. In the mouse roughly 30 minor histocompatibility loci have been recognized, comprising more than 500 genes. Histocompatibility Loci, Minor,Histocompatibility Locus, Minor,Loci, Minor Histocompatibility,Locus, Minor Histocompatibility,Minor Histocompatibility Locus
D011828 Radiation Chimera An organism whose body contains cell populations of different genotypes as a result of the TRANSPLANTATION of donor cells after sufficient ionizing radiation to destroy the mature recipient's cells which would otherwise reject the donor cells. Chimera, Radiation,Chimeras, Radiation,Radiation Chimeras
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D006082 Graft Enhancement, Immunologic The induction of prolonged survival and growth of allografts of either tumors or normal tissues which would ordinarily be rejected. It may be induced passively by introducing graft-specific antibodies from previously immunized donors, which bind to the graft's surface antigens, masking them from recognition by T-cells; or actively by prior immunization of the recipient with graft antigens which evoke specific antibodies and form antigen-antibody complexes which bind to the antigen receptor sites of the T-cells and block their cytotoxic activity. Immunologic Enhancement of Grafts,Enhancement, Immunologic Graft,Graft Enhancement,Graft Enhancement, Immunological,Immunologic Graft Enhancement,Enhancement, Graft,Enhancement, Immunological Graft,Enhancements, Graft,Enhancements, Immunologic Graft,Enhancements, Immunological Graft,Graft Enhancements,Graft Enhancements, Immunologic,Graft Enhancements, Immunological,Immunologic Graft Enhancements,Immunological Graft Enhancement,Immunological Graft Enhancements
D006086 Graft vs Host Disease The clinical entity characterized by anorexia, diarrhea, loss of hair, leukopenia, thrombocytopenia, growth retardation, and eventual death brought about by the GRAFT VS HOST REACTION. Graft-Versus-Host Disease,Homologous Wasting Disease,Runt Disease,Graft-vs-Host Disease,Disease, Graft-Versus-Host,Disease, Graft-vs-Host,Disease, Homologous Wasting,Disease, Runt,Diseases, Graft-Versus-Host,Diseases, Graft-vs-Host,Graft Versus Host Disease,Graft-Versus-Host Diseases,Graft-vs-Host Diseases

Related Publications

P Mauch, and J M Lipton, and B L Hamilton, and J Obbagy, and D Nathan, and S Hellman
October 1983, Clinics in haematology,
P Mauch, and J M Lipton, and B L Hamilton, and J Obbagy, and D Nathan, and S Hellman
April 1994, Transplantation,
P Mauch, and J M Lipton, and B L Hamilton, and J Obbagy, and D Nathan, and S Hellman
December 1978, The Journal of experimental medicine,
P Mauch, and J M Lipton, and B L Hamilton, and J Obbagy, and D Nathan, and S Hellman
May 2005, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation,
P Mauch, and J M Lipton, and B L Hamilton, and J Obbagy, and D Nathan, and S Hellman
December 1996, Transplantation proceedings,
P Mauch, and J M Lipton, and B L Hamilton, and J Obbagy, and D Nathan, and S Hellman
May 1987, Transplantation,
P Mauch, and J M Lipton, and B L Hamilton, and J Obbagy, and D Nathan, and S Hellman
January 2003, Journal of human genetics,
P Mauch, and J M Lipton, and B L Hamilton, and J Obbagy, and D Nathan, and S Hellman
April 2001, Neurology,
P Mauch, and J M Lipton, and B L Hamilton, and J Obbagy, and D Nathan, and S Hellman
May 1982, Clinical immunology and immunopathology,
P Mauch, and J M Lipton, and B L Hamilton, and J Obbagy, and D Nathan, and S Hellman
November 2017, Transplantation,
Copied contents to your clipboard!