Effects of atropine and gastric inhibitory polypeptide on hepatic glucose uptake and insulin extraction in conscious dogs. 1985

Z Chap, and T Ishida, and J Chou, and R Lewis, and C Hartley, and M Entman, and J B Field
Diabetes Research Laboratory, St. Luke's Episcopal Hospital, Division of Endicrinology, Baylor College of Medicine, Houston, Texas, 77030, USA.

Previous studies comparing the effects of oral, intraportal, and peripheral venous administration of glucose in conscious dogs demonstrated a significant increase in hepatic extraction of insulin only after oral glucose, but similar hepatic uptake of glucose after oral and intraportal glucose, which was greater than that after peripheral intravenous glucose infusion. This study evaluated the effect of atropine blockade of the parasympathetic nervous system on the increased fractional hepatic extraction of insulin and the role of gastric inhibitory polypeptide (GIP) on augmented hepatic uptake of oral glucose in conscious dogs with chronically implanted Doppler flow probes on the portal vein and hepatic artery, and catheters in the portal and hepatic veins and carotid artery. Since atropine infusion decreased absorption of glucose, and in order to achieve comparable portal vein levels of glucose and insulin, the dogs receiving atropine were given 1.9 +/- 0.1 g/kg glucose, compared with the control dogs who received 1.1 +/- 0.1 g/kg. The percentage of the glucose load that was absorbed was greater in the dogs not given atropine (80 +/- 4 vs. 44 +/- 7%), but because of the different loads, the absolute amount of glucose absorbed was similar in both groups (20.2 +/- 1.6 vs. 21.7 +/- 4.1 g). Although delayed by atropine, the peak portal vein glucose and insulin concentrations and the amounts presented to the liver were similar in both groups. However, the increased portal vein plasma flow and fractional hepatic extraction of insulin observed after oral glucose was not observed in the dogs infused with atropine. The net hepatic glucose uptake after oral glucose was significantly less at 10, 20, and 45 min in the atropine-treated dogs, and the area under the curve over the 180-min period was 44% less. However, the latter was not statistically significant. Infusion of GIP with peripheral intravenous glucose did not increase hepatic uptake of glucose or the fractional hepatic extraction of insulin compared with peripheral intravenous glucose alone. These results indicate an important role for parasympathetic innervation in the augmented fractional hepatic extraction of insulin, and increased portal vein plasma flow after oral glucose. Although a relationship between the augmented fractional extraction of insulin and the net hepatic glucose uptake may exist, it does not necessarily indicate that the former is required for the latter. Such parasympathetic innervation may be involved in the greater removal of glucose by the liver after oral compared with peripheral glucose administration. The augmented hepatic uptake of glucose and fractional hepatic extraction of insulin after oral glucose doesn not appear to be mediated by gastric inhibitory polypeptide.

UI MeSH Term Description Entries
D007263 Infusions, Parenteral The administration of liquid medication, nutrient, or other fluid through some other route than the alimentary canal, usually over minutes or hours, either by gravity flow or often by infusion pumping. Intra-Abdominal Infusions,Intraperitoneal Infusions,Parenteral Infusions,Peritoneal Infusions,Infusion, Intra-Abdominal,Infusion, Intraperitoneal,Infusion, Parenteral,Infusion, Peritoneal,Infusions, Intra-Abdominal,Infusions, Intraperitoneal,Infusions, Peritoneal,Intra Abdominal Infusions,Intra-Abdominal Infusion,Intraperitoneal Infusion,Parenteral Infusion,Peritoneal Infusion
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D011169 Portal Vein A short thick vein formed by union of the superior mesenteric vein and the splenic vein. Portal Veins,Vein, Portal,Veins, Portal
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005260 Female Females
D005749 Gastric Inhibitory Polypeptide A gastrointestinal peptide hormone of about 43-amino acids. It is found to be a potent stimulator of INSULIN secretion and a relatively poor inhibitor of GASTRIC ACID secretion. Glucose-Dependent Insulinotropic Peptide,Gastric-Inhibitory Polypeptide,Glucose Dependent Insulinotropic Peptide,Glucose-Dependent Insulin-Releasing Peptide,Glucose Dependent Insulin Releasing Peptide,Inhibitory Polypeptide, Gastric,Insulin-Releasing Peptide, Glucose-Dependent,Insulinotropic Peptide, Glucose-Dependent,Peptide, Glucose-Dependent Insulin-Releasing,Peptide, Glucose-Dependent Insulinotropic,Polypeptide, Gastric Inhibitory,Polypeptide, Gastric-Inhibitory
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose

Related Publications

Z Chap, and T Ishida, and J Chou, and R Lewis, and C Hartley, and M Entman, and J B Field
March 1987, Digestive diseases and sciences,
Z Chap, and T Ishida, and J Chou, and R Lewis, and C Hartley, and M Entman, and J B Field
September 1984, Endocrinology,
Z Chap, and T Ishida, and J Chou, and R Lewis, and C Hartley, and M Entman, and J B Field
November 1992, Digestive diseases and sciences,
Z Chap, and T Ishida, and J Chou, and R Lewis, and C Hartley, and M Entman, and J B Field
June 1978, Diabetes,
Z Chap, and T Ishida, and J Chou, and R Lewis, and C Hartley, and M Entman, and J B Field
January 1982, The American journal of physiology,
Z Chap, and T Ishida, and J Chou, and R Lewis, and C Hartley, and M Entman, and J B Field
October 1983, The American journal of physiology,
Z Chap, and T Ishida, and J Chou, and R Lewis, and C Hartley, and M Entman, and J B Field
January 1990, Diabetes,
Z Chap, and T Ishida, and J Chou, and R Lewis, and C Hartley, and M Entman, and J B Field
June 1983, Metabolism: clinical and experimental,
Z Chap, and T Ishida, and J Chou, and R Lewis, and C Hartley, and M Entman, and J B Field
March 1975, British journal of pharmacology,
Z Chap, and T Ishida, and J Chou, and R Lewis, and C Hartley, and M Entman, and J B Field
January 1993, Pancreas,
Copied contents to your clipboard!