Changes in deoxynucleoside triphosphate pools induced by inhibitors and modulators of ribonucleotide reductase. 1985

R M Fox

Changes in dNTP pools have been studied by a number of investigators, in a wide range of cell types. The in vitro pertubations in dNTP pool levels induced, in particular, by deoxynucleosides which act as allosteric modulators, are not totally consistent with current 'in vitro models' of ribonucleotide reductase function. This problem has also been addressed by Henderson et al. (1980) who stress the profusion of such models. Possible explanations, apart from the technical problems of the range of different experimental conditions (e.g. concentration of modulator used, time of incubation, etc.) for the various cell lines include: Modulators presumably have unpredictable 'network' effects by inhibiting or stimulating many other enzymes involved in the de novo and salvage synthesis of purines and pyrimidines. It is possible there are two separate forms of ribonucleotide reductase, one specifically reducing CDP/UDP, the other ADP/GDP. This, in particular, would explain the lack of decrease in dCTP levels after elevation of the dATP pool. There may be variations in ribonucleotide function which in vivo are cell specific, e.g. in thymic-derived compared with non-T-cell types. Peculiarities of T-cells include: Their ability to elevate their dNTP pools on exposure to very low exogenous concentration of deoxynucleoside. This may reflect very low rates of dNTP catabolism. The biological response of T-cells to elevation of the dATP or dGTP pool is reflected by a G1 block compared to an S phase block in cell-cycle progression in non-T-cell lines. The possibility that, in thymic cells, ribonucleotide reduction is restricted to ADP/GDP while pyrimidine dNTPs are synthesized by salvage pathways. As well, possible variation in the pool localization of dNTPs depending on production by either de novo or salvage synthesis could produce dNTP pool changes not clearly in accord with in vitro models. Clearly, the solution to these problems (although not easy) requires systematic comparative study, using cells of various origin (particularly T vs non-T), of dNTP pool responses to deoxynucleoside modulators, with an attempt to explore the factors described above. However, in the detailed pursuit of such an analysis the concept, that these variations in the control of nucleotide metabolism in T and non-T-cell systems may reflect quite significant differences in growth control and cell-cycle progression, should not be lost.

UI MeSH Term Description Entries
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003838 Deoxyadenine Nucleotides Adenine nucleotides which contain deoxyribose as the sugar moiety. Deoxyadenosine Phosphates,Nucleotides, Deoxyadenine,Phosphates, Deoxyadenosine
D003848 Deoxyguanine Nucleotides Guanine nucleotides which contain deoxyribose as the sugar moiety. Deoxyguanosine Phosphates,Nucleotides, Deoxyguanine,Phosphates, Deoxyguanosine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006918 Hydroxyurea An antineoplastic agent that inhibits DNA synthesis through the inhibition of ribonucleoside diphosphate reductase. Hydroxycarbamid,Hydrea,Oncocarbide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001388 Aziridines Saturated azacyclopropane compounds. They include compounds with substitutions on CARBON or NITROGEN atoms. Ethyleneimines,Azacyclopropanes, Saturated,Dimethyleneimines,Saturated Azacyclopropanes
D012264 Ribonucleotide Reductases Ribonucleotide Reductase,Reductase, Ribonucleotide,Reductases, Ribonucleotide
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte

Related Publications

R M Fox
July 1983, Biochemical and biophysical research communications,
R M Fox
January 1985, Basic life sciences,
R M Fox
September 1984, Biochemical and biophysical research communications,
R M Fox
December 2015, Journal of medicinal chemistry,
Copied contents to your clipboard!