Staphylococcal alpha-toxin-induced PGI2 production in endothelial cells: role of calcium. 1985

N Suttorp, and W Seeger, and E Dewein, and S Bhakdi, and L Roka

Studies in erythrocytes indicate that staphylococcal alpha-toxin generates discrete transmembrane channels with an effective diameter of 2-3 nm. In cultured, confluent, pig pulmonary arterial endothelial cells we studied the triggering of the arachidonic acid cascade and its dependence on calcium influx, possibly through toxin-created pores. In endothelial cells alpha-toxin time dependently (5-30 min) and dose dependently (0.1-8 micrograms/ml) stimulated the release of radiolabeled arachidonic acid and prostacyclin (PGI2) production in similar amounts as the calcium ionophore A23187 (10 microM). Preincubation of alpha-toxin with neutralizing antibodies abolished the effect. The toxin response was strictly dose dependent on extracellular calcium but not on magnesium. The toxin effect was accompanied by an up to 10-fold increased passive permeability of pulmonary arterial endothelial cells for 45Ca. Interference with calcium-calmodulin function (trifluoperazine, W7) dose dependently reduced production of PGI2, but blockers of physiological calcium channels (verapamil, nimodipine, nisoldipine, and diltiazem) did not. In contrast to the effect of the ionophore A23187, the toxin effect was accompanied by a release of potassium, but in neither system was there a release of lactate dehydrogenase. In addition, alpha-toxin but not ionophore-exposed endothelial cells showed an increased passive influx of small radiolabeled markers (45Ca and [3H]sucrose) but not of large markers [( 3H]inulin and [3H]dextran). These data are consistent with the concept that alpha-toxin triggers the arachidonic acid cascade in pulmonary arterial endothelial cells by calcium influx and suggest that this calcium influx may proceed through toxin-created transmembrane channels.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002132 Calcium Radioisotopes Unstable isotopes of calcium that decay or disintegrate emitting radiation. Ca atoms with atomic weights 39, 41, 45, 47, 49, and 50 are radioactive calcium isotopes. Radioisotopes, Calcium
D004727 Endothelium A layer of epithelium that lines the heart, blood vessels (ENDOTHELIUM, VASCULAR), lymph vessels (ENDOTHELIUM, LYMPHATIC), and the serous cavities of the body. Endotheliums
D006460 Hemolysin Proteins Proteins from BACTERIA and FUNGI that are soluble enough to be secreted to target ERYTHROCYTES and insert into the membrane to form beta-barrel pores. Biosynthesis may be regulated by HEMOLYSIN FACTORS. Hemolysin,Hemolysins,Hemalysins,Proteins, Hemolysin

Related Publications

N Suttorp, and W Seeger, and E Dewein, and S Bhakdi, and L Roka
December 1990, Ophthalmology,
N Suttorp, and W Seeger, and E Dewein, and S Bhakdi, and L Roka
January 1989, The Canadian journal of cardiology,
N Suttorp, and W Seeger, and E Dewein, and S Bhakdi, and L Roka
December 1966, Journal of bacteriology,
N Suttorp, and W Seeger, and E Dewein, and S Bhakdi, and L Roka
July 1999, Prostaglandins, leukotrienes, and essential fatty acids,
N Suttorp, and W Seeger, and E Dewein, and S Bhakdi, and L Roka
January 1985, Infection and immunity,
N Suttorp, and W Seeger, and E Dewein, and S Bhakdi, and L Roka
November 1972, Infection and immunity,
N Suttorp, and W Seeger, and E Dewein, and S Bhakdi, and L Roka
July 1992, Prostaglandins, leukotrienes, and essential fatty acids,
N Suttorp, and W Seeger, and E Dewein, and S Bhakdi, and L Roka
April 1992, The American journal of physiology,
N Suttorp, and W Seeger, and E Dewein, and S Bhakdi, and L Roka
July 1965, Annals of the New York Academy of Sciences,
N Suttorp, and W Seeger, and E Dewein, and S Bhakdi, and L Roka
April 1995, Prostaglandins, leukotrienes, and essential fatty acids,
Copied contents to your clipboard!