Importance of immunoglobulin isotype in human antibody-dependent, cell-mediated cytotoxicity directed by murine monoclonal antibodies. 1985

T J Kipps, and P Parham, and J Punt, and L A Herzenberg

Using the fluorescence activated cell sorter to select rare IgG2a- and IgG2b-producing variants, we developed switch variant families of hybridomas from IgG1-producing hybridomas, ME1 and MA2.1. The IgG2a and IgG2b antibodies produced by such switch variants have the same binding activities for HLA as the IgG1 antibodies produced by the parent hybridomas. Using these antibodies, we directly compared the IgG1, IgG2a, and IgG2b murine Ig isotypes for their capacities to direct human peripheral blood lymphocytes (PBL) in antibody-dependent cell-mediated cytotoxicity (ADCC) against a B lymphoblastoid cell line. We demonstrate that, for antibodies of identical binding affinity and specificity, the murine IgG2a isotype is the most effective in directing ADCC by human effector cells. The murine IgG2b directs intermediate levels of ADCC activity while IgG1 is inactive. We identified the effector cells in human PBL that mediate IgG2a or IgG2b ADCC as nonadherent killer (K) cells. These cells express the C3bi receptor and have cytolytic activity which is specifically blocked by a monoclonal antibody (anti-Leu-11a) that binds the Fc receptor (FcR) of such cells. Finally, FcR-bearing K cells bind to target cell-bound, rather than free, IgG2a or IgG2b molecules.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007126 Immunoglobulin Allotypes Allelic variants of the immunoglobulin light chains (IMMUNOGLOBULIN LIGHT CHAINS) or heavy chains (IMMUNOGLOBULIN HEAVY CHAINS) encoded by ALLELES of IMMUNOGLOBULIN GENES. Allotypes, Immunoglobulin,Allotypic Antibodies,Antibodies, Allotypic,Ig Allotypes,Allotype, Ig,Allotype, Immunoglobulin,Allotypes, Ig,Allotypic Antibody,Antibody, Allotypic,Ig Allotype,Immunoglobulin Allotype
D007135 Immunoglobulin Variable Region That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions. Variable Region, Ig,Variable Region, Immunoglobulin,Framework Region, Immunoglobulin,Fv Antibody Fragments,Fv Fragments,Ig Framework Region,Ig Variable Region,Immunoglobulin Framework Region,Immunoglobulin Fv Fragments,Immunoglobulin V,Antibody Fragment, Fv,Antibody Fragments, Fv,Fragment, Fv,Fragment, Fv Antibody,Fragment, Immunoglobulin Fv,Fragments, Fv,Fragments, Fv Antibody,Fragments, Immunoglobulin Fv,Framework Region, Ig,Framework Regions, Ig,Framework Regions, Immunoglobulin,Fv Antibody Fragment,Fv Fragment,Fv Fragment, Immunoglobulin,Fv Fragments, Immunoglobulin,Ig Framework Regions,Ig Variable Regions,Immunoglobulin Framework Regions,Immunoglobulin Fv Fragment,Immunoglobulin Variable Regions,Regions, Immunoglobulin Variable,Variable Regions, Ig,Variable Regions, Immunoglobulin
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006825 Hybridomas Cells artificially created by fusion of activated lymphocytes with neoplastic cells. The resulting hybrid cells are cloned and produce pure MONOCLONAL ANTIBODIES or T-cell products, identical to those produced by the immunologically competent parent cell. Hybridoma

Related Publications

T J Kipps, and P Parham, and J Punt, and L A Herzenberg
May 1985, Journal of immunology (Baltimore, Md. : 1950),
T J Kipps, and P Parham, and J Punt, and L A Herzenberg
April 1985, Cancer research,
T J Kipps, and P Parham, and J Punt, and L A Herzenberg
November 1991, AIDS (London, England),
T J Kipps, and P Parham, and J Punt, and L A Herzenberg
January 1983, Annals of the New York Academy of Sciences,
T J Kipps, and P Parham, and J Punt, and L A Herzenberg
January 1987, Cancer immunology, immunotherapy : CII,
T J Kipps, and P Parham, and J Punt, and L A Herzenberg
January 1985, Japanese journal of cancer research : Gann,
T J Kipps, and P Parham, and J Punt, and L A Herzenberg
July 1990, Neurosurgery,
T J Kipps, and P Parham, and J Punt, and L A Herzenberg
September 1991, British journal of cancer,
T J Kipps, and P Parham, and J Punt, and L A Herzenberg
May 1987, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!