Immunocytochemical analysis of normal and acid maltase-deficient muscle cultures. 1985

A F Miranda, and S Shanske, and A P Hays, and S DiMauro

Muscle cultures from patients with infantile and later-onset acid maltase deficiency (AMD) and from unaffected controls were studied immunocytochemically with anti-acid maltase (anti-AM) antibodies and fluorescein-labeled goat anti-rabbit IgG second antibody. In control muscle cells, an intense granular distribution of staining was seen, consistent with lysosomal localization of AM. Cultured muscle cells from two patients with infantile AMD (Pompe's disease) did not fluoresce, whereas cells from two patients with AMD of later onset did fluoresce, showing a distribution similar to that of controls.

UI MeSH Term Description Entries
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D005087 Glucan 1,4-alpha-Glucosidase An enzyme that catalyzes the hydrolysis of terminal 1,4-linked alpha-D-glucose residues successively from non-reducing ends of polysaccharide chains with the release of beta-glucose. It is also able to hydrolyze 1,6-alpha-glucosidic bonds when the next bond in sequence is 1,4. 1,4-alpha-Glucosidase, Exo,Amyloglucosidase,Exo-1,4-alpha-Glucosidase,Glucoamylase,gamma-Amylase,Glucoamylase G1,Glucoamylase G2,1,4-alpha-Glucosidase, Glucan,Exo 1,4 alpha Glucosidase,Glucan 1,4 alpha Glucosidase,gamma Amylase
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005959 Glucosidases Enzymes that hydrolyze O-glucosyl-compounds. (Enzyme Nomenclature, 1992) EC 3.2.1.-. Glucosidase
D006008 Glycogen Storage Disease A group of inherited metabolic disorders involving the enzymes responsible for the synthesis and degradation of glycogen. In some patients, prominent liver involvement is presented. In others, more generalized storage of glycogen occurs, sometimes with prominent cardiac involvement. Glycogenosis,Disease, Glycogen Storage,Diseases, Glycogen Storage,Glycogen Storage Diseases,Glycogenoses,Storage Disease, Glycogen,Storage Diseases, Glycogen
D006009 Glycogen Storage Disease Type II An autosomal recessively inherited glycogen storage disease caused by GLUCAN 1,4-ALPHA-GLUCOSIDASE deficiency. Large amounts of GLYCOGEN accumulate in the LYSOSOMES of skeletal muscle (MUSCLE, SKELETAL); HEART; LIVER; SPINAL CORD; and BRAIN. Three forms have been described: infantile, childhood, and adult. The infantile form is fatal in infancy and presents with hypotonia and a hypertrophic cardiomyopathy (CARDIOMYOPATHY, HYPERTROPHIC). The childhood form usually presents in the second year of life with proximal weakness and respiratory symptoms. The adult form consists of a slowly progressive proximal myopathy. (From Muscle Nerve 1995;3:S61-9; Menkes, Textbook of Child Neurology, 5th ed, pp73-4) Acid Maltase Deficiency Disease,Generalized Glycogenosis,Glycogenosis 2,Lysosomal alpha-1,4-Glucosidase Deficiency Disease,Pompe Disease,Acid Alpha-Glucosidase Deficiency,Acid Maltase Deficiency,Adult Glycogen Storage Disease Type II,Alpha-1,4-Glucosidase Deficiency,Deficiency Disease, Acid Maltase,Deficiency Disease, Lysosomal alpha-1,4-Glucosidase,Deficiency of Alpha-Glucosidase,GAA Deficiency,GSD II,GSD2,Glycogen Storage Disease II,Glycogen Storage Disease Type 2,Glycogen Storage Disease Type II, Adult,Glycogen Storage Disease Type II, Infantile,Glycogen Storage Disease Type II, Juvenile,Glycogenosis Type II,Infantile Glycogen Storage Disease Type II,Juvenile Glycogen Storage Disease Type II,Pompe's Disease,Acid Alpha Glucosidase Deficiency,Acid Alpha-Glucosidase Deficiencies,Acid Maltase Deficiencies,Alpha 1,4 Glucosidase Deficiency,Alpha-1,4-Glucosidase Deficiencies,Alpha-Glucosidase Deficiencies,Alpha-Glucosidase Deficiencies, Acid,Alpha-Glucosidase Deficiency,Alpha-Glucosidase Deficiency, Acid,Deficiencies, Acid Alpha-Glucosidase,Deficiencies, Acid Maltase,Deficiencies, Alpha-1,4-Glucosidase,Deficiencies, GAA,Deficiency of Alpha Glucosidase,Deficiency, Acid Alpha-Glucosidase,Deficiency, Acid Maltase,Deficiency, Alpha-1,4-Glucosidase,Deficiency, GAA,Disease, Pompe,Disease, Pompe's,GAA Deficiencies,GSD2s,Generalized Glycogenoses,Glycogenoses, Generalized,Glycogenosis, Generalized,Lysosomal alpha 1,4 Glucosidase Deficiency Disease,Maltase Deficiencies, Acid,Pompes Disease,Type II, Glycogenosis,Type IIs, Glycogenosis
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry

Related Publications

A F Miranda, and S Shanske, and A P Hays, and S DiMauro
June 1984, Experimental neurology,
A F Miranda, and S Shanske, and A P Hays, and S DiMauro
May 1973, Archives of biochemistry and biophysics,
A F Miranda, and S Shanske, and A P Hays, and S DiMauro
January 1984, Basic and applied histochemistry,
A F Miranda, and S Shanske, and A P Hays, and S DiMauro
April 1988, Muscle & nerve,
A F Miranda, and S Shanske, and A P Hays, and S DiMauro
May 1988, Experimental neurology,
A F Miranda, and S Shanske, and A P Hays, and S DiMauro
December 1970, Journal of neurology, neurosurgery, and psychiatry,
A F Miranda, and S Shanske, and A P Hays, and S DiMauro
January 1981, Neurology,
A F Miranda, and S Shanske, and A P Hays, and S DiMauro
January 2004, Neuromuscular disorders : NMD,
A F Miranda, and S Shanske, and A P Hays, and S DiMauro
June 1994, Muscle & nerve,
A F Miranda, and S Shanske, and A P Hays, and S DiMauro
February 1995, Muscle & nerve,
Copied contents to your clipboard!