Studies on mutagen-sensitive strains of Drosophila melanogaster. VI. The effect of DNA-repair deficiencies in spermatids, spermatocytes and spermatogonia irradiated in N2 or O2. 1985

J C Eeken, and F H Sobels

This study was aimed at ascertaining the extent to which paternal repair processes possibly deficient in mei-9a, mei-41D5 and mus-101D1 genotypes would affect the recovery of radiation-induced recessive lethals in early spermatids, spermatocytes and spermatogonia. These germ cell stages were sampled in two 2-day broods from freshly hatched males, that were irradiated as 24-h old pupae in O2, or N2 followed by N2 or O2 post-treatment. Spontaneous mutation frequencies were higher in mei-9 and mei-41 males, and thus appropriate corrections were applied to the radiation data. Only with mei-9 males a clear and consistent increase of the radiation-induced mutation frequency was observed. The effect is somewhat more pronounced in brood B, presumably representing spermatogonia, than in brood A and is observed after radiation in either O2 or N2. The paternal repair process thus differs from the maternal one in that it also responds to radiation damage induced in O2. The finding that, following irradiation under anoxia, post-treatment with O2 (versus that with N2), also lowers the mutation frequency in mei-9 males, indicates that the repair defect in mei-9 does not interfere with oxygen-dependent post-radiation repair. Thus there are two different paternal repair processes in these early stages of spermatogenesis: that is, one controlled by mei-9 and one depending on oxygen. Mei-41 and mus-101 do not appear to interfere with the paternal repair process. The frequency of translocations recovered from these stages was likewise not affected by mus-101.

UI MeSH Term Description Entries
D008297 Male Males
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013087 Spermatids Male germ cells derived from the haploid secondary SPERMATOCYTES. Without further division, spermatids undergo structural changes and give rise to SPERMATOZOA. Spermatoblasts,Spermatid,Spermatoblast
D013090 Spermatocytes Male germ cells derived from SPERMATOGONIA. The euploid primary spermatocytes undergo MEIOSIS and give rise to the haploid secondary spermatocytes which in turn give rise to SPERMATIDS. Spermiocytes,Spermatocyte,Spermiocyte
D013093 Spermatogonia Euploid male germ cells of an early stage of SPERMATOGENESIS, derived from prespermatogonia. With the onset of puberty, spermatogonia at the basement membrane of the seminiferous tubule proliferate by mitotic then meiotic divisions and give rise to the haploid SPERMATOCYTES. Spermatophores,Spermatogonias,Spermatophore

Related Publications

J C Eeken, and F H Sobels
May 1967, Nature,
J C Eeken, and F H Sobels
November 1979, Mutation research,
J C Eeken, and F H Sobels
January 1981, Genetics,
Copied contents to your clipboard!