The IgE antibody system is coordinately regulated by FcR epsilon-positive lymphoid cells and IgE-selective soluble factors. 1985

D H Katz

Recent studies in mice have demonstrated that exposure of lymphocytes to appropriate levels of IgE initiates a cascade of cellular and molecular interactions which function as a network to control IgE synthesis. A key manifestation of these events is the expression of Fc receptors for IgE (FcR epsilon) on both B and T lymphocytes, and the fact that such expression of FcR epsilon can be selectively modulated by the isotype-specific regulatory mediators, suppressive factor of allergy (SFA) and enhancing factor of allergy (EFA). In humans, we have previously shown that the in vitro induction by pokeweed mitogen (PWM) of IgE biosynthesis by peripheral blood lymphocytes (PBL) can also be selectively suppressed by SFA. Herein we show that PWM also induces expression of FcR epsilon+ and FcR gamma+ cells among human PBL by day 2 or 3 in culture, and this early development of FcR epsilon+ lymphocytes appears to be a coordinate event with the ultimate de novo synthesis of IgE in this system. Moreover, as previously documented for IgE synthesis, the presence of SFA causes a 50% reduction of FcR epsilon+ cells induced by PWM. This inhibition is selective, since FcR+ cells for IgG are not affected by exposure to human SFA derived from a recently constructed human T cell hybridoma line which constitutively secretes large quantities of biologically active human SFA. These findings further support the regulatory role that FcR epsilon+ lymphocytes must play in the development of IgE responses by human cells in vitro, and suggest a mechanism by which SFA can selectively inhibit IgE synthesis in PWM-stimulated cultures of human PBL.

UI MeSH Term Description Entries
D006967 Hypersensitivity Altered reactivity to an antigen, which can result in pathologic reactions upon subsequent exposure to that particular antigen. Allergy,Allergic Reaction,Allergic Reactions,Allergies,Hypersensitivities,Reaction, Allergic,Reactions, Allergic
D007073 Immunoglobulin E An immunoglobulin associated with MAST CELLS. Overexpression has been associated with allergic hypersensitivity (HYPERSENSITIVITY, IMMEDIATE). IgE
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D007128 Immunoglobulin Fragments Partial immunoglobulin molecules resulting from selective cleavage by proteolytic enzymes or generated through PROTEIN ENGINEERING techniques. Antibody Fragment,Antibody Fragments,Ig Fragment,Ig Fragments,Immunoglobulin Fragment,Fragment, Antibody,Fragment, Ig,Fragment, Immunoglobulin,Fragments, Antibody,Fragments, Ig,Fragments, Immunoglobulin
D007139 Immunoglobulin epsilon-Chains The class of heavy chains found in IMMUNOGLOBULIN E. They have a molecular weight of approximately 72 kDa and they contain about 550 amino acid residues arranged in five domains and about three times more carbohydrate than the heavy chains of IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; and IMMUNOGLOBULIN G. Ig epsilon Chains,Immunoglobulins, epsilon-Chain,Immunoglobulin epsilon-Chain,epsilon-Chain Immunoglobulins,epsilon-Immunoglobulin Heavy Chain,epsilon-Immunoglobulin Heavy Chains,Chains, Ig epsilon,Heavy Chain, epsilon-Immunoglobulin,Heavy Chains, epsilon-Immunoglobulin,Immunoglobulin epsilon Chain,Immunoglobulin epsilon Chains,Immunoglobulins, epsilon Chain,epsilon Chain Immunoglobulins,epsilon Chains, Ig,epsilon Immunoglobulin Heavy Chain,epsilon Immunoglobulin Heavy Chains,epsilon-Chain, Immunoglobulin,epsilon-Chains, Immunoglobulin
D007141 Immunoglobulin Fc Fragments Crystallizable fragments composed of the carboxy-terminal halves of both IMMUNOGLOBULIN HEAVY CHAINS linked to each other by disulfide bonds. Fc fragments contain the carboxy-terminal parts of the heavy chain constant regions that are responsible for the effector functions of an immunoglobulin (COMPLEMENT fixation, binding to the cell membrane via FC RECEPTORS, and placental transport). This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN. Fc Fragment,Fc Fragments,Fc Immunoglobulin,Fc Immunoglobulins,Ig Fc Fragments,Immunoglobulin Fc Fragment,Immunoglobulins, Fc,Immunoglobulins, Fc Fragment,Fc Fragment Immunoglobulins,Fc Fragment, Immunoglobulin,Fc Fragments, Ig,Fc Fragments, Immunoglobulin,Fragment Immunoglobulins, Fc,Fragment, Fc,Fragments, Ig Fc,Immunoglobulin, Fc
D007166 Immunosuppressive Agents Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging. Immunosuppressant,Immunosuppressive Agent,Immunosuppressants,Agent, Immunosuppressive,Agents, Immunosuppressive
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008222 Lymphokines Soluble protein factors generated by activated lymphocytes that affect other cells, primarily those involved in cellular immunity. Lymphocyte Mediators,Mediators, Lymphocyte
D009930 Organic Chemicals A broad class of substances containing carbon and its derivatives. Many of these chemicals will frequently contain hydrogen with or without oxygen, nitrogen, sulfur, phosphorus, and other elements. They exist in either carbon chain or carbon ring form. Organic Chemical,Chemical, Organic,Chemicals, Organic

Related Publications

D H Katz
July 1999, Molecular and cellular endocrinology,
D H Katz
January 1997, International archives of allergy and immunology,
Copied contents to your clipboard!