Chemotactic transducer proteins of Escherichia coli exhibit homology with methyl-accepting proteins from distantly related bacteria. 1985

D M Nowlin, and D O Nettleton, and G W Ordal, and G L Hazelbauer

Transducers are transmembrane, methyl-accepting proteins central to the chemotactic systems of the enteric bacteria Escherichia coli and Salmonella typhimurium. Methyl-accepting proteins have been reported in a number of species in addition to these enteric bacteria. Those species include Bacillus subtilis and Spirochaeta aurantia, representatives of groups that diverged from ancestral enteric bacteria and from each other very early in bacterial evolution. An antiserum that reacts with all transducers of E. coli precipitated specifically methyl-accepting proteins from B. subtilis and S. aurantia, indicating that these proteins share antigenic determinants with transducers of E. coli. In addition, analysis of tryptic peptides by high-pressure liquid chromatography revealed similarities in the regions of methyl-accepting sites for proteins from all three species. These observations imply that structural features have been preserved in the three species from transducers contained in a common ancestor of eubacteria. It is thus reasonable to predict that other flagellated, chemotactic bacteria will be found to contain methyl-accepting proteins homologous to transducers of enteric bacteria.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002630 Chemotactic Factors Chemical substances that attract or repel cells. The concept denotes especially those factors released as a result of tissue injury, microbial invasion, or immunologic activity, that attract LEUKOCYTES; MACROPHAGES; or other cells to the site of infection or insult. Chemoattractant,Chemotactic Factor,Chemotaxin,Chemotaxins,Cytotaxinogens,Cytotaxins,Macrophage Chemotactic Factor,Chemoattractants,Chemotactic Factors, Macrophage,Macrophage Chemotactic Factors,Chemotactic Factor, Macrophage,Factor, Chemotactic,Factor, Macrophage Chemotactic
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000072236 Methyl-Accepting Chemotaxis Proteins Transmembrane sensor receptor proteins that are central components of the chemotactic systems of a number of motile bacterial species which include ESCHERICHIA COLI and SALMONELLA TYPHIMURIUM. Methyl-accepting chemotaxis proteins derive their name from a sensory adaptation process which involves methylation at several glutamyl residues in their cytoplasmic domain. Methyl-accepting chemotaxis proteins trigger chemotactic responses across spatial chemical gradients, causing organisms to move either toward favorable stimuli or away from toxic ones. Methyl-Accepting Chemotaxis Protein,MACP-I,MACP-II,Methyl Accepting Chemotaxis Protein 1,Methyl Accepting Chemotaxis Protein 2,Methyl Accepting Chemotaxis Protein 3,Methyl-Accepting Chemotaxis Protein I,Methyl-Accepting Chemotaxis Protein II,Methyl-Accepting Chemotaxis Protein III,Chemotaxis Protein, Methyl-Accepting,Chemotaxis Proteins, Methyl-Accepting,Methyl Accepting Chemotaxis Protein,Methyl Accepting Chemotaxis Protein I,Methyl Accepting Chemotaxis Protein II,Methyl Accepting Chemotaxis Protein III,Methyl Accepting Chemotaxis Proteins,Protein, Methyl-Accepting Chemotaxis,Proteins, Methyl-Accepting Chemotaxis
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013142 Spirochaeta A genus of flexible, spiral rods found in hydrogen sulfide-containing mud, sewage, and polluted water. None of the species properly referred to in this genus are pathogenic.

Related Publications

D M Nowlin, and D O Nettleton, and G W Ordal, and G L Hazelbauer
September 2018, Applied and environmental microbiology,
D M Nowlin, and D O Nettleton, and G W Ordal, and G L Hazelbauer
October 1981, Proceedings of the National Academy of Sciences of the United States of America,
D M Nowlin, and D O Nettleton, and G W Ordal, and G L Hazelbauer
December 1987, Journal of molecular biology,
D M Nowlin, and D O Nettleton, and G W Ordal, and G L Hazelbauer
June 1982, The Journal of biological chemistry,
D M Nowlin, and D O Nettleton, and G W Ordal, and G L Hazelbauer
December 1983, Journal of bacteriology,
D M Nowlin, and D O Nettleton, and G W Ordal, and G L Hazelbauer
January 1985, Journal of bacteriology,
D M Nowlin, and D O Nettleton, and G W Ordal, and G L Hazelbauer
August 1980, Biochemical Society transactions,
D M Nowlin, and D O Nettleton, and G W Ordal, and G L Hazelbauer
January 1993, Journal of bacteriology,
D M Nowlin, and D O Nettleton, and G W Ordal, and G L Hazelbauer
January 1989, Journal of bacteriology,
D M Nowlin, and D O Nettleton, and G W Ordal, and G L Hazelbauer
September 1982, The Journal of biological chemistry,
Copied contents to your clipboard!