Growth hormone responses to continuous infusions of growth hormone-releasing hormone. 1985

M C Gelato, and R S Rittmaster, and O H Pescovitz, and M C Nicoletti, and W E Nixon, and R D'Agata, and D L Loriaux, and G R Merriam

The pattern of GH secretion during a continuous 4-h iv infusion of 1 microgram/kg.h GH-releasing hormone (1-44)-NH2 (GHRH-44) or saline was examined in 15 adult men. There was prompt release of GH beginning within 20 min of starting the GHRH-44 infusions, reaching peak GH levels of 43 +/- 11 (+/- SE) ng/ml within 60-90 min. This is similar to the peak GH level reached in men after a single 1 microgram/kg GHRH iv bolus dose (34 +/- 8 ng/ml). GH levels then fell progressively, but did not return to baseline during the GHRH infusions. After GHRH infusions, the response (delta) to a 1 microgram/kg GHRH bolus dose was markedly attenuated (delta GH, 2.7 +/- 0.9 ng/ml) compared to the response (delta GH, 23 +/- 3 ng/ml) after saline infusion. Dispersed rat pituicytes perifused with medium containing 10 nM GHRH-44 responded with an initial rapid rise in GH secretion, followed by a progressive decline, and after 150 min of continuous GHRH exposure, the response to pulses of an equal or higher (100 nM) GHRH concentration was blunted. These results indicate that the peak response to GHRH infusions is similar to that of maximally effective bolus doses; during infusions, the GH response is not sustained; and immediately after GHRH infusions, the response to previously effective bolus doses is reduced. These phenomena could reflect either receptor-mediated desensitization, the depletion of rapidly releasable GH stores, or both. A counterregulatory rise in hypothalamic somatostatin secretion is not necessary to produce these effects, since the same phenomenon occurs in vitro and in vivo.

UI MeSH Term Description Entries
D007263 Infusions, Parenteral The administration of liquid medication, nutrient, or other fluid through some other route than the alimentary canal, usually over minutes or hours, either by gravity flow or often by infusion pumping. Intra-Abdominal Infusions,Intraperitoneal Infusions,Parenteral Infusions,Peritoneal Infusions,Infusion, Intra-Abdominal,Infusion, Intraperitoneal,Infusion, Parenteral,Infusion, Peritoneal,Infusions, Intra-Abdominal,Infusions, Intraperitoneal,Infusions, Peritoneal,Intra Abdominal Infusions,Intra-Abdominal Infusion,Intraperitoneal Infusion,Parenteral Infusion,Peritoneal Infusion
D008297 Male Males
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006854 Hydrocortisone The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Cortef,Cortisol,Pregn-4-ene-3,20-dione, 11,17,21-trihydroxy-, (11beta)-,11-Epicortisol,Cortifair,Cortril,Epicortisol,Hydrocortisone, (11 alpha)-Isomer,Hydrocortisone, (9 beta,10 alpha,11 alpha)-Isomer,11 Epicortisol
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M C Gelato, and R S Rittmaster, and O H Pescovitz, and M C Nicoletti, and W E Nixon, and R D'Agata, and D L Loriaux, and G R Merriam
January 1989, Acta paediatrica Scandinavica. Supplement,
M C Gelato, and R S Rittmaster, and O H Pescovitz, and M C Nicoletti, and W E Nixon, and R D'Agata, and D L Loriaux, and G R Merriam
July 1984, The Journal of clinical investigation,
M C Gelato, and R S Rittmaster, and O H Pescovitz, and M C Nicoletti, and W E Nixon, and R D'Agata, and D L Loriaux, and G R Merriam
January 1985, Biology of the neonate,
M C Gelato, and R S Rittmaster, and O H Pescovitz, and M C Nicoletti, and W E Nixon, and R D'Agata, and D L Loriaux, and G R Merriam
June 1989, Acta psychiatrica Scandinavica,
M C Gelato, and R S Rittmaster, and O H Pescovitz, and M C Nicoletti, and W E Nixon, and R D'Agata, and D L Loriaux, and G R Merriam
September 1976, Biology of reproduction,
M C Gelato, and R S Rittmaster, and O H Pescovitz, and M C Nicoletti, and W E Nixon, and R D'Agata, and D L Loriaux, and G R Merriam
April 1985, Endocrinologia japonica,
M C Gelato, and R S Rittmaster, and O H Pescovitz, and M C Nicoletti, and W E Nixon, and R D'Agata, and D L Loriaux, and G R Merriam
May 1985, The New England journal of medicine,
M C Gelato, and R S Rittmaster, and O H Pescovitz, and M C Nicoletti, and W E Nixon, and R D'Agata, and D L Loriaux, and G R Merriam
January 1985, The Journal of endocrinology,
M C Gelato, and R S Rittmaster, and O H Pescovitz, and M C Nicoletti, and W E Nixon, and R D'Agata, and D L Loriaux, and G R Merriam
August 1988, Endocrinology,
M C Gelato, and R S Rittmaster, and O H Pescovitz, and M C Nicoletti, and W E Nixon, and R D'Agata, and D L Loriaux, and G R Merriam
September 1989, Neuroendocrinology,
Copied contents to your clipboard!