Induction of F9 embryonal carcinoma cell differentiation by inhibition of polyamine synthesis. 1985

S M Oredsson, and M Billgren, and O Heby

alpha-Difluoromethylornithine (DFMO), a highly selective inhibitor of ornithine decarboxylase (ODC), induced terminal differentiation of F9 mouse embryonal carcinoma cells in culture. Differentiation was assessed using morphological criteria and the level of plasminogen activator activity. The observed phenotypic changes and the fact that the cells did not synthesize alpha-fetoprotein, indicate that they were parietal endoderm cells. The putrescine, spermidine and spermine content of untreated control cells increased during exponential growth and then decreased gradually with continued time in culture. The increases in putrescine and spermidine contents were prevented by DFMO treatment. In fact, the putrescine and spermidine content decreased below the limits of detection after only one day of treatment. The addition of putrescine to the culture medium at any time within 4 days of DFMO treatment, prevented the DFMO-induced differentiation, suggesting that the effects observed were indeed caused by polyamine depletion. The phenotypic changes induced by DFMO were similar to those induced by retinoic acid, a very potent inducer of embryonal carcinoma differentiation. Although retinoic acid can inhibit ODC activity and putrescine accumulation, it is unlikely that this mechanism of action is responsible for retinoic acid-induced F9 cell differentiation, inasmuch as putrescine addition did not prevent the expression of the differentiated phenotype. Undifferentiated F9 embryonal carcinoma cells exhibited a very short G1 phase, and in this respect they are similar to the cells of the preimplantation mouse embryo. In control (exponentially growing) cultures a majority of the F9 cells were in the S phase, but in DFMO-treated cultures they accumulated in the G1 phase and showed no further proliferative potential.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009952 Ornithine An amino acid produced in the urea cycle by the splitting off of urea from arginine. 2,5-Diaminopentanoic Acid,Ornithine Dihydrochloride, (L)-Isomer,Ornithine Hydrochloride, (D)-Isomer,Ornithine Hydrochloride, (DL)-Isomer,Ornithine Hydrochloride, (L)-Isomer,Ornithine Monoacetate, (L)-Isomer,Ornithine Monohydrobromide, (L)-Isomer,Ornithine Monohydrochloride, (D)-Isomer,Ornithine Monohydrochloride, (DL)-Isomer,Ornithine Phosphate (1:1), (L)-Isomer,Ornithine Sulfate (1:1), (L)-Isomer,Ornithine, (D)-Isomer,Ornithine, (DL)-Isomer,Ornithine, (L)-Isomer,2,5 Diaminopentanoic Acid
D009955 Ornithine Decarboxylase A pyridoxal-phosphate protein, believed to be the rate-limiting compound in the biosynthesis of polyamines. It catalyzes the decarboxylation of ornithine to form putrescine, which is then linked to a propylamine moiety of decarboxylated S-adenosylmethionine to form spermidine. Ornithine Carboxy-lyase,Carboxy-lyase, Ornithine,Decarboxylase, Ornithine,Ornithine Carboxy lyase
D010960 Plasminogen Activators A heterogeneous group of proteolytic enzymes that convert PLASMINOGEN to FIBRINOLYSIN. They are concentrated in the lysosomes of most cells and in the vascular endothelium, particularly in the vessels of the microcirculation. Extrinsic Plasminogen Activators,Plasminogen Activator,Uterine-Tissue Plasminogen Activator,Uterine Tissue Plasminogen Activator
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D011700 Putrescine A toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine. 1,4-Butanediamine,1,4-Diaminobutane,Tetramethylenediamine,1,4 Butanediamine,1,4 Diaminobutane
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D000518 Eflornithine An inhibitor of ORNITHINE DECARBOXYLASE, the rate limiting enzyme of the polyamine biosynthetic pathway. Difluoromethylornithine,alpha-Difluoromethylornithine,DL-alpha-Difluoromethylornithine,Eflornithine Hydrochloride,Eflornithine Monohydrochloride, Monohydrate,MDL-71,782 A,Ornidyl,RMI 71782,Vaniqa,alpha-Difluoromethyl Ornithine,DL alpha Difluoromethylornithine,MDL 71,782 A,MDL71,782 A,Ornithine, alpha-Difluoromethyl,alpha Difluoromethyl Ornithine,alpha Difluoromethylornithine

Related Publications

S M Oredsson, and M Billgren, and O Heby
November 1995, Research communications in molecular pathology and pharmacology,
S M Oredsson, and M Billgren, and O Heby
January 1992, Growth factors (Chur, Switzerland),
S M Oredsson, and M Billgren, and O Heby
October 1989, Developmental biology,
S M Oredsson, and M Billgren, and O Heby
December 1984, Cell differentiation,
S M Oredsson, and M Billgren, and O Heby
February 1987, Experimental cell research,
S M Oredsson, and M Billgren, and O Heby
April 1995, Experimental cell research,
S M Oredsson, and M Billgren, and O Heby
January 1980, Proceedings of the National Academy of Sciences of the United States of America,
S M Oredsson, and M Billgren, and O Heby
January 1986, Progress in clinical and biological research,
Copied contents to your clipboard!