Ionization constants of two active-site lysyl epsilon-amino groups of ribulosebisphosphate carboxylase/oxygenase. 1985

F C Hartman, and S Milanez, and E H Lee

Trinitrobenzene sulfonate rapidly inactivates ribulosebisphosphate carboxylase/oxygenase from both spinach and Rhodospirillum rubrum. With large molar excesses of the reagent, the reactions obey pseudo-first order kinetics and the rates of inactivations are directly proportional to the concentrations of trinitrobenzene sulfonate; thus, there is no indication of reversible complexation of reagent with enzyme. Saturating levels of the competitive inhibitor 2-carboxyribitol 1,5-bisphosphate reduce the rates of inactivations but do not prevent them, thereby suggesting that the groups subject to arylation remain accessible in the enzyme complexed with competitive inhibitor. Characterization of tryptic digests of the inactivated enzymes reveals that Lys-166 of the R. rubrum enzyme and Lys-334 of the spinach enzyme are the only major sites of arylation. Both of these lysines have been assigned to the catalytic site by prior affinity labeling studies and are found within highly conserved regions of primary structure. As a monoanion over a wide pH range, trinitrobenzene sulfonate, for which the carboxylase lacks high affinity, can thus be used to determine the pKa values of the two active-site lysyl epsilon-amino groups. Based on the pH dependency of inactivation of the R. rubrum enzyme by trinitrobenzene sulfonate, the epsilon-amino group of Lys-166 exhibits a pKa of 7.9 and an intrinsic reactivity (ko) of 670 M-1 min-1. In analogous experiments, Lys-334 of the spinach enzyme exhibits a pKa of 9.0 and a ko of 4500 M-1 min-1. Under deactivation conditions (i.e. in the absence of CO2 and Mg2+), the pKa of Lys-334 becomes 9.8 and the ko is increased to 26,000 M-1 min-1. By comparison, the reaction of trinitrobenzene sulfonate with N-alpha-acetyl-lysine reveals a pKa of 10.8 and a ko of 1250 M-1 min-1. The spinach carboxylase, catalytically inactive as a consequence of selective arylation of Lys-334, still exhibits tight binding of the transition state analogue 2-carboxyarabinitol 1,5-bisphosphate. Therefore, Lys-334 is not required for substrate binding and may serve a role in catalysis. The unusually low pKa of Lys-166 argues that this residue is also important to catalysis rather than substrate binding.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D010105 Oxygenases Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules. Oxygenase
D010428 Pentosephosphates
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

F C Hartman, and S Milanez, and E H Lee
February 1978, Biochemical and biophysical research communications,
F C Hartman, and S Milanez, and E H Lee
January 1982, Biochemistry,
F C Hartman, and S Milanez, and E H Lee
January 1982, Methods in enzymology,
F C Hartman, and S Milanez, and E H Lee
March 1980, Biochemistry,
F C Hartman, and S Milanez, and E H Lee
June 1984, Archives of biochemistry and biophysics,
F C Hartman, and S Milanez, and E H Lee
January 1978, Basic life sciences,
Copied contents to your clipboard!