Laminar distribution of hippocampal rhythmic slow activity (RSA) in the behaving rat: current-source density analysis, effects of urethane and atropine. 1986

G Buzsáki, and J Czopf, and I Kondákor, and L Kellényi

This study investigated the laminar distribution of rhythmic slow wave activity (RSA) in the dorsal hippocampus of the rat during running. Depth analyses of field EEG were performed by stepping the recording electrode in 82.5 micron increments and sampling RSA at each depth. One-dimensional current-source density (CSD) was calculated from the RSA profiles to enhance spatial resolution of current sources and sinks. Laminar analysis of power, coherence, and phase of RSA with respect to a stationary electrode in the stratum oriens of CA1 was performed with spectral methods. RSA waves in the CA1-dentate axis had power maxima at about the hippocampal fissures, hilus, outer molecular layer of the endal leaf of dentate gyrus and stratum oriens of CA1, in that order. A gradual shift of phase occurred in stratum radiatum of CA1. Large phase-shifts were found in both the endal and ectal leaves of the fascia dentata. A null zone and associated sudden phase-reversal of RSA were observed in stratum lucidum of CA3. Multiunit activity showed phase-locked modulation with RSA in the granule cell layer of the dentate gyrus and pyramidal cell layer of CA1, CA3, and subiculum. CSD analysis in the CA1-dentate axis revealed multiple source-sink pairs. The sinks and sources showed cyclic changes with RSA, and were attributed to the rhythmic, but time-shifted, activity of hippocampal afferents from the septum and entorhinal cortex. The gradual phase-shift in CA1, and the configurational changes of RSA waves with depth, are explained by the summation of extracellular currents produced by time-delayed sink-source pairs (RSA dipoles). When the cholinergic septohippocampal path was blocked by atropine a null zone in the middle of stratum radiatum of CA1 occurred and the phase-shift of RSA became steeper. Under urethane anesthesia a null zone was present in the inner stratum radiatum associated with a sudden phase-reversal of RSA. Urethane reduced the power of RSA in the hilus and decreased the firing rate of the granule cells. It is suggested that field RSA is produced by several rhythmical dipoles along the somadendritic surface of pyramidal cells and granule cells and the spatiotemporal relations of the individual dipoles determine the actually observed extracellular RSA.

UI MeSH Term Description Entries
D008297 Male Males
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000768 Anesthesia, General Procedure in which patients are induced into an unconscious state through use of various medications so that they do not feel pain during surgery. Anesthesias, General,General Anesthesia,General Anesthesias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001285 Atropine An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. AtroPen,Atropin Augenöl,Atropine Sulfate,Atropine Sulfate Anhydrous,Atropinol,Anhydrous, Atropine Sulfate,Augenöl, Atropin,Sulfate Anhydrous, Atropine,Sulfate, Atropine
D012688 Septum Pellucidum A triangular double membrane separating the anterior horns of the LATERAL VENTRICLES of the brain. It is situated in the median plane and bounded by the CORPUS CALLOSUM and the body and columns of the FORNIX (BRAIN). Septum Lucidum,Septum Pelusidum,Supracommissural Septum,Lucidum, Septum,Lucidums, Septum,Pellucidum, Septum,Pelusidum, Septum,Pelusidums, Septum,Septum Lucidums,Septum Pelusidums,Septum, Supracommissural,Septums, Supracommissural,Supracommissural Septums
D013826 Theta Rhythm Brain waves characterized by a frequency of 4-7 Hz, usually observed in the temporal lobes when the individual is awake, but relaxed and sleepy. Rhythm, Theta,Rhythms, Theta,Theta Rhythms
D014520 Urethane Antineoplastic agent that is also used as a veterinary anesthetic. It has also been used as an intermediate in organic synthesis. Urethane is suspected to be a carcinogen. Ethyl Carbamate,Urethan,Carbamate, Ethyl

Related Publications

G Buzsáki, and J Czopf, and I Kondákor, and L Kellényi
July 1991, Behavioural brain research,
G Buzsáki, and J Czopf, and I Kondákor, and L Kellényi
September 1982, Behavioural brain research,
G Buzsáki, and J Czopf, and I Kondákor, and L Kellényi
January 1992, Acta neurobiologiae experimentalis,
G Buzsáki, and J Czopf, and I Kondákor, and L Kellényi
January 2006, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
G Buzsáki, and J Czopf, and I Kondákor, and L Kellényi
January 1982, Acta neurobiologiae experimentalis,
G Buzsáki, and J Czopf, and I Kondákor, and L Kellényi
September 1984, Life sciences,
G Buzsáki, and J Czopf, and I Kondákor, and L Kellényi
January 1999, Journal of neurophysiology,
G Buzsáki, and J Czopf, and I Kondákor, and L Kellényi
March 1977, Electroencephalography and clinical neurophysiology,
G Buzsáki, and J Czopf, and I Kondákor, and L Kellényi
October 1994, Neuroreport,
Copied contents to your clipboard!