Enhanced reactive lysis of paroxysmal nocturnal hemoglobinuria erythrocytes by C5b-9 does not involve increased C7 binding or cell-bound C3b. 1985

S I Rosenfeld, and D E Jenkins, and J P Leddy

The most complement (C)-sensitive type of erythrocytes (E) occurring in paroxysmal nocturnal hemoglobinuria (type III PNH E) have previously been found to exhibit approximately twofold to fourfold greater lysis than normal human E when exposed to isolated human C5b6, C7, C8, and C9 (reactive lysis), in the absence of a known source of C3- or C5-convertases or fluid-phase C3. In further studies on the mechanism of this phenomenon, we now report that C5b6-dependent binding of 125I-C7 to two samples of PNH E (greater than 95% type III) is equal to that found with normal human E at each of several C5b6 inputs tested. Lysis developed by excess C8 and C9, however, was consistently greater for the PNH E. Thus, the exaggerated sensitivity of type III PNH E to reactive lysis cannot be explained by abnormally high uptake of C5b6 or C7 from the fluid phase. Rather, the data indicate that cell-bound C5b67 sites are converted to effective hemolytic sites with greater efficiency on type III PNH E than on normal human E, assuming that the distribution of cell-bound C7 throughout both cell populations is similar. In related studies we have addressed the proposal by other investigators that C3b putatively bound to PNH E in vivo might account for their increased sensitivity to reactive lysis in vitro, by analogy to prior observations on C3b-potentiated reactive lysis of sheep E. The latter hypothesis was made more appealing by the recent discovery that type III PNH E lack an integral membrane protein, decay-accelerating factor (DAF), which in normal E accelerates the decay of membrane-bound C3 convertases. Against this hypothesis, however, is our present finding that preincubation of PNH E with four different goat or rabbit polyclonal antibodies to human C3 failed to inhibit the subsequent reactive lysis of these cells. Under these same conditions, the C3b-dependent increment in reactive lysis of sheep EAC4b3b was abrogated by pretreatment with similar dilutions of these anti-C3 antibodies, generally in association with agglutination. Furthermore, sheep EAC4b3b displayed increased 125I-C7 binding in proportion to augmented lysis, in contrast to the findings with PNH E. Therefore, deficiency of DAF in type III PNH E does not adequately explain their supranormal sensitivity to reactive lysis unless DAF can modulate the terminal lytic steps by a mechanism distinct from its effect on C3 convertase decay. Alternatively, type III PNH E could have a more general abnormality in which DAF deficiency is one manifestation and increased sensitivity to reactive lysis is another.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D011951 Receptors, Complement Molecules on the surface of some B-lymphocytes and macrophages, that recognize and combine with the C3b, C3d, C1q, and C4b components of complement. Complement Receptors,Complement Receptor,Complement Receptor Type 1,Receptor, Complement
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D003179 Complement C3b The larger fragment generated from the cleavage of COMPLEMENT C3 by C3 CONVERTASE. It is a constituent of the ALTERNATIVE PATHWAY C3 CONVERTASE (C3bBb), and COMPLEMENT C5 CONVERTASES in both the classical (C4b2a3b) and the alternative (C3bBb3b) pathway. C3b participates in IMMUNE ADHERENCE REACTION and enhances PHAGOCYTOSIS. It can be inactivated (iC3b) or cleaved by various proteases to yield fragments such as COMPLEMENT C3C; COMPLEMENT C3D; C3e; C3f; and C3g. C3b Complement,C3bi,Complement 3b,Complement Component 3b,Inactivated C3b,iC3b,C3b, Complement,C3b, Inactivated,Complement, C3b,Component 3b, Complement
D003184 Complement C7 A 93-kDa serum glycoprotein encoded by C7 gene. It is a polypeptide chain with 28 disulfide bridges. In the formation of MEMBRANE ATTACK COMPLEX; C7 is the next component to bind the C5b-6 complex forming a trimolecular complex C5b-7 which is lipophilic, resembles an integral membrane protein, and serves as an anchor for the late complement components, C8 and C9. C7 Complement,Complement 7,Complement Component 7,C7, Complement,Complement, C7,Component 7, Complement
D003185 Complement C8 A 150-kDa serum glycoprotein composed of three subunits with each encoded by a different gene (C8A; C8B; and C8G). This heterotrimer contains a disulfide-linked C8alpha-C8gamma heterodimer and a noncovalently associated C8beta chain. C8 is the next component to bind the C5-7 complex forming C5b-8 that binds COMPLEMENT C9 and acts as a catalyst in the polymerization of C9. C8 Complement,Complement 8,Complement Component 8,Complement Component C8 alpha,Complement Component C8 alpha Chain,Complement Component C8 beta,Complement Component C8 beta Chain,Complement Component C8 gamma,Complement Component C8 gamma Chain,C8, Complement,Complement, C8,Component 8, Complement
D003186 Complement C9 A 63-kDa serum glycoprotein encoded by gene C9. Monomeric C9 (mC9) binds the C5b-8 complex to form C5b-9 which catalyzes the polymerization of C9 forming C5b-p9 (MEMBRANE ATTACK COMPLEX) and transmembrane channels leading to lysis of the target cell. Patients with C9 deficiency suffer from recurrent bacterial infections. C9 Complement,Complement 9,Complement Component 9,C9, Complement,Complement, C9,Component 9, Complement
D006041 Goats Any of numerous agile, hollow-horned RUMINANTS of the genus Capra, in the family Bovidae, closely related to the SHEEP. Capra,Capras,Goat
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006457 Hemoglobinuria, Paroxysmal A condition characterized by the recurrence of HEMOGLOBINURIA caused by intravascular HEMOLYSIS. In cases occurring upon cold exposure (paroxysmal cold hemoglobinuria), usually after infections, there is a circulating antibody which is also a cold hemolysin. In cases occurring during or after sleep (paroxysmal nocturnal hemoglobinuria), the clonal hematopoietic stem cells exhibit a global deficiency of cell membrane proteins. Paroxysmal Cold Hemoglobinuria,Paroxysmal Nocturnal Hemoglobinuria,Marchiafava-Micheli Syndrome,Paroxysmal Hemoglobinuria,Paroxysmal Hemoglobinuria, Cold,Paroxysmal Hemoglobinuria, Nocturnal,Cold Paroxysmal Hemoglobinuria,Hemoglobinuria, Cold Paroxysmal,Hemoglobinuria, Nocturnal Paroxysmal,Hemoglobinuria, Paroxysmal Cold,Hemoglobinuria, Paroxysmal Nocturnal,Marchiafava Micheli Syndrome,Nocturnal Paroxysmal Hemoglobinuria,Syndrome, Marchiafava-Micheli

Related Publications

S I Rosenfeld, and D E Jenkins, and J P Leddy
October 1982, Blut,
S I Rosenfeld, and D E Jenkins, and J P Leddy
August 1985, Proceedings of the National Academy of Sciences of the United States of America,
S I Rosenfeld, and D E Jenkins, and J P Leddy
March 1983, Immunobiology,
S I Rosenfeld, and D E Jenkins, and J P Leddy
July 1987, The Journal of clinical investigation,
S I Rosenfeld, and D E Jenkins, and J P Leddy
November 1967, The Journal of clinical investigation,
S I Rosenfeld, and D E Jenkins, and J P Leddy
September 1970, Blood,
S I Rosenfeld, and D E Jenkins, and J P Leddy
September 1976, Journal of immunology (Baltimore, Md. : 1950),
S I Rosenfeld, and D E Jenkins, and J P Leddy
November 1983, Journal of immunology (Baltimore, Md. : 1950),
S I Rosenfeld, and D E Jenkins, and J P Leddy
January 1992, Journal of the Medical Association of Thailand = Chotmaihet thangphaet,
S I Rosenfeld, and D E Jenkins, and J P Leddy
July 1962, Nature,
Copied contents to your clipboard!