Dual function of calmodulin (delta) in phosphorylase kinase. 1985

Z Hessová, and M Varsányi, and L M Heilmeyer

The Ca2+-independent activity of fast skeletal muscle phosphorylase kinase, A0, can be reversibly stimulated by heparin more than 20-fold; concomitantly the Ca2+-dependent A2 activity is abolished completely. Heparin also drastically changes the aggregation state of the enzyme; aggregated species contain significantly less delta and show an about fivefold higher A0 activity than the tetrameric form containing delta stoichiometrically. We interpret this to mean that delta has two functions in the phosphorylase kinase: an inhibitory one with respect to A0 and an activating one with respect to A2. The inhibition of A0 by Ca2+-free delta is released, i.e. A0 increases when this subunit dissociates from the holoenzyme. The maximally heparin-stimulated A0 activity, A0,hep, is enriched from a crude extract to the same degree and approximately with the same yield as the major activity, A2. The phosphorylase kinase is not eluted from DEAE-cellulose as a symmetrical bell-shaped protein peak. The peak fraction contains the activities A2 and A0,hep superimposed and yields a nearly homogeneous sedimentation boundary with an S20,w value of 25.5 S. The A0 yields a much broader eluation profile showing a distinct maximum from the A2 activity which contains slower sedimenting species of 12.1 S, some tetrameric enzyme of 22.7 S and higher aggregated material. Over the whole profile the activity ratio A2/A0 decreases about sevenfold whereas the ratio A2/A0,hep is constant on average. This shows that A0 is an intrinsic activity of phosphorylase kinase. The heparin-activated A0 activity or A0 itself in the presence of the phosphorylase phosphatase inhibitor, fluoride, can trigger a Ca2+-independent flash activation of phosphorylase in a protein-glycogen complex. Thus, A0 could be responsible for the conversion of phosphorylase b to a at 20 nM free Ca2+ in resting, hormone-stimulated, muscle.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010764 Phosphorylase Kinase An enzyme that catalyzes the conversion of ATP and PHOSPHORYLASE B to ADP and PHOSPHORYLASE A. Glycogen Phosphorylase Kinase,Phosphorylase b Kinase,Kinase, Glycogen Phosphorylase,Kinase, Phosphorylase,Kinase, Phosphorylase b,Phosphorylase Kinase, Glycogen,b Kinase, Phosphorylase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011232 Chemical Precipitation The formation of a solid in a solution as a result of a chemical reaction or the aggregation of soluble substances into complexes large enough to fall out of solution. Precipitation, Chemical
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002918 Chymotrypsin A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side. Alpha-Chymotrypsin Choay,Alphacutanée,Avazyme

Related Publications

Z Hessová, and M Varsányi, and L M Heilmeyer
January 1981, European journal of biochemistry,
Z Hessová, and M Varsányi, and L M Heilmeyer
April 1986, Biokhimiia (Moscow, Russia),
Z Hessová, and M Varsányi, and L M Heilmeyer
November 1993, Molecular and cellular biochemistry,
Z Hessová, and M Varsányi, and L M Heilmeyer
September 1993, Journal of molecular recognition : JMR,
Z Hessová, and M Varsányi, and L M Heilmeyer
June 1987, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Z Hessová, and M Varsányi, and L M Heilmeyer
July 1983, Biochemistry international,
Z Hessová, and M Varsányi, and L M Heilmeyer
August 1983, FEBS letters,
Z Hessová, and M Varsányi, and L M Heilmeyer
October 1982, Circulation research,
Z Hessová, and M Varsányi, and L M Heilmeyer
January 1994, The Journal of biological chemistry,
Copied contents to your clipboard!