Effect of confluent holding on potentially lethal damage repair, cell cycle progression, and chromosomal aberrations in human normal and ataxia-telangiectasia fibroblasts. 1985

J B Little, and H Nagasawa

The effects of confluent holding recovery on survival, chromosomal aberrations, and progression through the life cycle after subculture of human diploid fibroblasts X-irradiated during density inhibition of growth have been examined. The responses of three normal strains were determined and compared with those of four ataxia-telangiectasia (AT), an AT heterozygote, and two hereditary retinoblastoma strains. The capacity for potentially lethal damage repair (PLDR) was slightly reduced in retinoblastoma cells and almost absent in AT cells, but normal in an AT heterozygote. The decline in chromosomal aberrations seen in normal cells during confluent holding was absent in AT cells, consistent with the lack of PLDR. Following subculture, all irradiated AT fibroblasts progressed through the cell cycle to the first mitosis with no delay. AT heterozygotic and retinoblastoma cells showed both an enhanced delay in the initiation of DNA synthesis and a large fraction of cells irreversibly blocked in G1 as compared with normal cells. Both the delayed entry into S and the G1 block were reduced by confluent holding. These results indicate that AT homozygotic and heterozygotic cells respond quite differently to X irradiation.

UI MeSH Term Description Entries
D011831 Radiation Genetics A subdiscipline of genetics that studies RADIATION EFFECTS on the components and processes of biological inheritance. Genetics, Radiation
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006579 Heterozygote An individual having different alleles at one or more loci regarding a specific character. Carriers, Genetic,Genetic Carriers,Carrier, Genetic,Genetic Carrier,Heterozygotes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001260 Ataxia Telangiectasia An autosomal recessive inherited disorder characterized by choreoathetosis beginning in childhood, progressive CEREBELLAR ATAXIA; TELANGIECTASIS of CONJUNCTIVA and SKIN; DYSARTHRIA; B- and T-cell immunodeficiency, and RADIOSENSITIVITY to IONIZING RADIATION. Affected individuals are prone to recurrent sinobronchopulmonary infections, lymphoreticular neoplasms, and other malignancies. Serum ALPHA-FETOPROTEINS are usually elevated. (Menkes, Textbook of Child Neurology, 5th ed, p688) The gene for this disorder (ATM) encodes a cell cycle checkpoint protein kinase and has been mapped to chromosome 11 (11q22-q23). Louis-Bar Syndrome,Ataxia Telangiectasia Syndrome,Ataxia-Telangiectasia,Telangiectasia, Cerebello-Oculocutaneous,Louis Bar Syndrome,Syndrome, Ataxia Telangiectasia,Syndrome, Louis-Bar
D012175 Retinoblastoma A malignant tumor arising from the nuclear layer of the retina that is the most common primary tumor of the eye in children. The tumor tends to occur in early childhood or infancy and may be present at birth. The majority are sporadic, but the condition may be transmitted as an autosomal dominant trait. Histologic features include dense cellularity, small round polygonal cells, and areas of calcification and necrosis. An abnormal pupil reflex (leukokoria); NYSTAGMUS, PATHOLOGIC; STRABISMUS; and visual loss represent common clinical characteristics of this condition. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, p2104) Glioblastoma, Retinal,Glioma, Retinal,Neuroblastoma, Retinal,Eye Cancer, Retinoblastoma,Familial Retinoblastoma,Hereditary Retinoblastoma,Sporadic Retinoblastoma,Cancer, Retinoblastoma Eye,Cancers, Retinoblastoma Eye,Eye Cancers, Retinoblastoma,Familial Retinoblastomas,Glioblastomas, Retinal,Gliomas, Retinal,Hereditary Retinoblastomas,Neuroblastomas, Retinal,Retinal Glioblastoma,Retinal Glioblastomas,Retinal Glioma,Retinal Gliomas,Retinal Neuroblastoma,Retinal Neuroblastomas,Retinoblastoma Eye Cancer,Retinoblastoma Eye Cancers,Retinoblastoma, Familial,Retinoblastoma, Hereditary,Retinoblastoma, Sporadic,Retinoblastomas,Retinoblastomas, Familial,Retinoblastomas, Hereditary,Retinoblastomas, Sporadic,Sporadic Retinoblastomas
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

J B Little, and H Nagasawa
April 1981, International journal of radiation biology and related studies in physics, chemistry, and medicine,
J B Little, and H Nagasawa
April 1989, International journal of radiation biology,
J B Little, and H Nagasawa
January 1983, Biochemical and biophysical research communications,
J B Little, and H Nagasawa
January 1982, IARC scientific publications,
J B Little, and H Nagasawa
September 1985, International journal of radiation biology and related studies in physics, chemistry, and medicine,
J B Little, and H Nagasawa
March 1986, International journal of radiation biology and related studies in physics, chemistry, and medicine,
J B Little, and H Nagasawa
February 1986, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
Copied contents to your clipboard!