Effects of thyroid hormone on mitochondrial oxidative phosphorylation. 1985

A J Verhoeven, and P Kamer, and A K Groen, and J M Tager

In order to locate sites of action of thyroid hormone on mitochondrial oxidative phosphorylation we have used an experimental application of control analysis as previously described [Groen, Wanders, Westerhoff, Van der Meer & Tager (1982) J. Biol. Chem. 257, 2754-2757]. Rat-liver mitochondria were isolated from hypothyroid rats or from hypothyroid rats 24 h after treatment with a single dose of 3,3',5-triiodothyronine (T3). The amount of control exerted by four different steps on State-3 respiration with succinate as respiratory substrate was quantified by using specific inhibitors. The hormone treatment resulted in an increase in the flux control coefficient of the adenine nucleotide translocator, the dicarboxylate carrier and cytochrome c oxidase and a decrease in the flux control coefficient of the bc1-complex. The results of this analysis indicate that thyroid hormone treatment results in an activation of the bc1-complex and of at least one other enzyme, possibly succinate dehydrogenase. Measurement of the extramitochondrial ATP/ADP ratio at different rates of respiration (induced by addition of different amounts of hexokinase in the presence of glucose and ATP) showed that the adenine nucleotide translocator operates at a higher (ATP/ADP)out after T3 treatment, which supports previous reports on stimulation of this step by thyroid hormone.

UI MeSH Term Description Entries
D007037 Hypothyroidism A syndrome that results from abnormally low secretion of THYROID HORMONES from the THYROID GLAND, leading to a decrease in BASAL METABOLIC RATE. In its most severe form, there is accumulation of MUCOPOLYSACCHARIDES in the SKIN and EDEMA, known as MYXEDEMA. It may be primary or secondary due to other pituitary disease, or hypothalamic dysfunction. Central Hypothyroidism,Primary Hypothyroidism,Secondary Hypothyroidism,TSH Deficiency,Thyroid-Stimulating Hormone Deficiency,Central Hypothyroidisms,Deficiency, TSH,Deficiency, Thyroid-Stimulating Hormone,Hormone Deficiency, Thyroid-Stimulating,Hypothyroidism, Central,Hypothyroidism, Primary,Hypothyroidism, Secondary,Hypothyroidisms,Primary Hypothyroidisms,Secondary Hypothyroidisms,TSH Deficiencies,Thyroid Stimulating Hormone Deficiency,Thyroid-Stimulating Hormone Deficiencies
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

A J Verhoeven, and P Kamer, and A K Groen, and J M Tager
August 1993, Biochemical Society transactions,
A J Verhoeven, and P Kamer, and A K Groen, and J M Tager
February 2008, Thyroid : official journal of the American Thyroid Association,
A J Verhoeven, and P Kamer, and A K Groen, and J M Tager
July 1960, The American journal of physiology,
A J Verhoeven, and P Kamer, and A K Groen, and J M Tager
April 1961, Technical report.; TR. Arctic Aeromedical Laboratory (U.S.),
A J Verhoeven, and P Kamer, and A K Groen, and J M Tager
January 1989, General pharmacology,
A J Verhoeven, and P Kamer, and A K Groen, and J M Tager
September 1980, The Journal of pharmacology and experimental therapeutics,
A J Verhoeven, and P Kamer, and A K Groen, and J M Tager
March 1982, Mineral and electrolyte metabolism,
A J Verhoeven, and P Kamer, and A K Groen, and J M Tager
December 1967, Angewandte Chemie (International ed. in English),
A J Verhoeven, and P Kamer, and A K Groen, and J M Tager
January 1991, Journal of biochemical toxicology,
A J Verhoeven, and P Kamer, and A K Groen, and J M Tager
July 1965, Arzneimittel-Forschung,
Copied contents to your clipboard!