Frequency dependence in scotopic flicker sensitivity. 1985

R W Nygaard, and T E Frumkes

Sensitivity to rod-mediated (scotopic) flicker was parametrically studied in the parafoveal retina of human observers. Confirming prior studies, the present results show that sensitivity to scotopic flicker has many similarities to that at photopic levels. Specifically, our results show that the frequency response function for scotopic flicker is characterized by both low- and high-frequency cutoffs and that sensitivity to low frequencies is described by Weber's law. Overall, however, scotopic flicker sensitivity is characterized by higher increment thresholds and lower frequency tuning than photopic flicker. The influences of spatial factors and the prevailing level of illuminance on sensitivity is sufficiently different for relatively low (less than 3 Hz) and relatively high (greater than 5 Hz) temporal frequencies to suggest that they may be mediated by different channels. This possibility is also suggested by selective adaptation experiments. These show that adaptation to flicker frequencies of 3, 5, and 7 Hz have a similar influence on sensitivity to subsequent flicker which is different from the influence on 1 Hz flicker adaptation. Results are compared with prior evidence for channeling within both the scotopic and photopic visual systems.

UI MeSH Term Description Entries
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D005425 Flicker Fusion The point or frequency at which all flicker of an intermittent light stimulus disappears. Flicker Fusions,Fusion, Flicker,Fusions, Flicker
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000221 Adaptation, Ocular The adjustment of the eye to variations in the intensity of light. Light adaptation is the adjustment of the eye when the light threshold is increased; DARK ADAPTATION when the light is greatly reduced. (From Cline et al., Dictionary of Visual Science, 4th ed) Light Adaptation,Adaptation, Light,Adaptations, Light,Adaptations, Ocular,Light Adaptations,Ocular Adaptation,Ocular Adaptations
D012684 Sensory Thresholds The minimum amount of stimulus energy necessary to elicit a sensory response. Sensory Threshold,Threshold, Sensory,Thresholds, Sensory
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway

Related Publications

R W Nygaard, and T E Frumkes
December 1981, Investigative ophthalmology & visual science,
R W Nygaard, and T E Frumkes
January 2018, Advances in experimental medicine and biology,
R W Nygaard, and T E Frumkes
June 1980, Canadian journal of psychology,
R W Nygaard, and T E Frumkes
June 2006, Schizophrenia research,
R W Nygaard, and T E Frumkes
September 1990, Archives of ophthalmology (Chicago, Ill. : 1960),
R W Nygaard, and T E Frumkes
January 1987, Vision research,
R W Nygaard, and T E Frumkes
March 1960, Journal of the Optical Society of America,
R W Nygaard, and T E Frumkes
May 1986, Archives of ophthalmology (Chicago, Ill. : 1960),
R W Nygaard, and T E Frumkes
November 1998, Vision research,
R W Nygaard, and T E Frumkes
January 2000, Vision research,
Copied contents to your clipboard!