Leishmania mexicana pifanoi: in vivo and in vitro interactions between amastigotes and macrophages. 1985

A A Pan, and B M Honigberg

Macrophages of the cell line J774 were used in a comparative study of virulence involving amastigote stages of Leishmania mexicana pifanoi isolated from macrophages (AMA-M) of the aforementioned cell line, amastigote forms grown in the UM-54-cell-free medium (AMA-C), and promastigote stages. The macrophage cultures were inoculated with AMA-M and AMA-C at the culture cell to parasite ratios of 1:3, 1:5, and 1:10. The macrophages were exposed to either kind of amastigotes for 24, 48, and 72 h. At the end of each of these periods, and for each dilution, the percentages of macrophages harboring the parasites within their cytoplasm and the mean numbers of intracellular parasite/macrophage were estimated on the basis of examination of 200 phagocytes. When either AMA-M or AMA-C were employed, after 24 h, the percentages of infected macrophages were, respectively, 84.5%, 89.0%, and 94.5% for the three aforementioned dilutions, the majority of the phagocytes containing 1-5 parasites. After 48- and 72-h exposures, the macrophages harbored 6-11 and 11-20 amastigotes/cell, respectively. Evidently intracellular multiplication of the amastigotes has taken place. In contrast to the results obtained with amastigote forms, after inoculations of the macrophages cultures with promastigotes at the dilutions previously used for amastigotes, only 48-78 phagocytes were found to contain intracellular stages within their cytoplasm. Many macrophages were parasite-free, especially when exposed to fewer promastigotes. Experiments in which 5 X10(6) promastigotes, AMA-M, or AMA-C were inoculated into the footpads of hamsters yielded the following results with regard to terminal footpad volumes: 1.57, 3.31, and 3.32 cm3, respectively. Evidently both kinds of amastigotes had equal virulence for hamsters; however, the promastigote stages were much les virulent for these experimental hosts.

UI MeSH Term Description Entries
D007891 Leishmania A genus of flagellate protozoa comprising several species that are pathogenic for humans. Organisms of this genus have an amastigote and a promastigote stage in their life cycles. As a result of enzymatic studies this single genus has been divided into two subgenera: Leishmania leishmania and Leishmania viannia. Species within the Leishmania leishmania subgenus include: L. aethiopica, L. arabica, L. donovani, L. enrietti, L. gerbilli, L. hertigi, L. infantum, L. major, L. mexicana, and L. tropica. The following species are those that compose the Leishmania viannia subgenus: L. braziliensis, L. guyanensis, L. lainsoni, L. naiffi, and L. shawi. Leishmania (Leishmania),Leishmania (Viannia),Leishmania leishmania,Leishmania viannia,Leishmania leishmanias,Leishmania viannias,Leishmanias,Leishmanias (Leishmania),Leishmanias (Viannia),leishmanias, Leishmania,viannias, Leishmania
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014774 Virulence The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS. Pathogenicity

Related Publications

A A Pan, and B M Honigberg
January 1974, Transactions of the Royal Society of Tropical Medicine and Hygiene,
A A Pan, and B M Honigberg
January 1984, Transactions of the Royal Society of Tropical Medicine and Hygiene,
A A Pan, and B M Honigberg
October 1995, Molecular and biochemical parasitology,
A A Pan, and B M Honigberg
November 1981, Molecular and biochemical parasitology,
A A Pan, and B M Honigberg
January 2012, Biochemistry research international,
Copied contents to your clipboard!