Mechanism of action of 5-aminolaevulinate dehydratase from human erythrocytes. 1985

P M Jordan, and P N Gibbs

Purified 5-aminolaevulinate dehydratase (porphobilinogen synthase, EC 4.2.1.24) from human erythrocytes was incubated initially with limiting amounts of 5-amino [5-14C]laevulinate in a rapid-mixing apparatus. The single-turnover reaction with respect to the bound labelled 5-aminolaevulinate was completed by the addition of unlabelled 5-aminolaevulinate and the resulting radioactive porphobilinogen was isolated and degraded. The 14C label was found to be located predominantly at C-2 of the product, demonstrating that, of the two substrate molecules participating in the reaction, the 5-aminolaevulinate molecule initially bound to the enzyme provides the propionic acid 'side' of the porphobilinogen. The same enzyme-[14C]substrate species that yields regiospecific porphobilinogen may be trapped by reaction with NaBH4, showing that the substrate molecule initially bound to the enzyme does so in the form of a Schiff base. A conventional incubation with 5-amino[5-14C]laevulinate yielded porphobilinogen with an equal distribution of the label between C-2 and C-11. The reaction mechanism of the human erythrocyte 5-aminolaevulinate dehydratase thus follows the same course as that of other dehydratases studied in our laboratory by using single-turnover techniques.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011162 Porphobilinogen
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000622 Aminolevulinic Acid A compound produced from succinyl-CoA and GLYCINE as an intermediate in heme synthesis. It is used as a PHOTOCHEMOTHERAPY for actinic KERATOSIS. 5-Amino Levulinic Acid,5-Aminolaevulinate,5-Aminolevulinate,Aminolevulinic Acid Hydrochloride,Delta-Aminolevulinic Acid,Levulan,5 Amino Levulinic Acid,5 Aminolaevulinate,5 Aminolevulinate,Acid Hydrochloride, Aminolevulinic,Acid, 5-Amino Levulinic,Acid, Aminolevulinic,Acid, Delta-Aminolevulinic,Delta Aminolevulinic Acid,Hydrochloride, Aminolevulinic Acid,Levulinic Acid, 5-Amino
D000623 Porphobilinogen Synthase An enzyme that catalyzes the formation of porphobilinogen from two molecules of 5-aminolevulinic acid. EC 4.2.1.24. Aminolevulinate Hydro-Lyase,Aminolevulinic Acid Dehydratase,ALA-Dehydrase,delta-Aminolevulinate Dehydratase,delta-Aminolevulinic Acid Dehydratase,ALA Dehydrase,Acid Dehydratase, Aminolevulinic,Acid Dehydratase, delta-Aminolevulinic,Aminolevulinate Hydro Lyase,Dehydratase, Aminolevulinic Acid,Dehydratase, delta-Aminolevulinate,Dehydratase, delta-Aminolevulinic Acid,Hydro-Lyase, Aminolevulinate,Synthase, Porphobilinogen,delta Aminolevulinate Dehydratase,delta Aminolevulinic Acid Dehydratase

Related Publications

P M Jordan, and P N Gibbs
January 1978, The International journal of biochemistry,
P M Jordan, and P N Gibbs
April 1969, Biochimica et biophysica acta,
P M Jordan, and P N Gibbs
January 1976, Biochemical Society transactions,
P M Jordan, and P N Gibbs
January 1976, Biochemical Society transactions,
P M Jordan, and P N Gibbs
December 1997, Nature structural biology,
P M Jordan, and P N Gibbs
September 1972, The Biochemical journal,
P M Jordan, and P N Gibbs
September 1985, The Biochemical journal,
Copied contents to your clipboard!