Myosin phosphorylation and contraction of feline esophageal smooth muscle. 1985

N W Weisbrodt, and R A Murphy

We tested the hypothesis that phosphorylation of the 20,000-Da light chain of myosin (LC 20) is related to mechanical activation of esophageal smooth muscle. Circular muscle layer strips of cat esophagus were taken from the lower esophageal sphincter (LES) and the distal esophageal body (EB). The LES strips developed tone spontaneously, and the EB strips were tonically contracted with carbachol. Both tissues relaxed in response to electrical-field stimulation. Phosphorylation of the LC 20 was determined in tissues quick-frozen during relaxation and during stress redevelopment after cessation of field stimulation. Stress and phosphorylation levels were low after 30 s of field stimulation, and a rapid contraction followed field stimulation. Phosphorylation in the LES increased from 0.043 +/- 0.029 to 0.328 +/- 0.043 mol Pi/mol LC 20 within 10 s after stimulation of the inhibitory nerves was terminated, while stress was still rising rapidly. Phosphorylation in the LES then declined to a steady-state value of 0.162 +/- 0.034 mol Pi/mol LC 20 after 10 min. Isotonic shortening velocities at a constant afterload following a quick release showed changes with time that were proportional to the level of phosphorylation. This was also true for values of maximal shortening velocity estimated for zero external load and for the rate of stress redevelopment after a step shortening. Comparable measurements were made in the carbachol-contracted EB. These results indicate that visceral smooth muscles, which normally function tonically (LES) or phasically (EB), exhibit an initial rapid mechanical activation associated with myosin phosphorylation.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D007551 Isotonic Contraction Muscle contraction with negligible change in the force of contraction but shortening of the distance between the origin and insertion. Contraction, Isotonic,Contractions, Isotonic,Isotonic Contractions
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat

Related Publications

N W Weisbrodt, and R A Murphy
May 1991, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
N W Weisbrodt, and R A Murphy
July 1991, Pflugers Archiv : European journal of physiology,
N W Weisbrodt, and R A Murphy
October 1980, The Journal of biological chemistry,
N W Weisbrodt, and R A Murphy
January 2005, Advances in experimental medicine and biology,
N W Weisbrodt, and R A Murphy
January 1992, Japanese journal of pharmacology,
N W Weisbrodt, and R A Murphy
June 2000, Nature cell biology,
N W Weisbrodt, and R A Murphy
April 1986, Science (New York, N.Y.),
N W Weisbrodt, and R A Murphy
August 1988, The Journal of pharmacology and experimental therapeutics,
N W Weisbrodt, and R A Murphy
July 1988, The American journal of physiology,
Copied contents to your clipboard!