Myosin phosphorylation, agonist concentration and contraction of tracheal smooth muscle. 1982

P de Lanerolle, and J R Condit, and M Tanenbaum, and R S Adelstein

Myosin phosphorylation plays an important part in excitation--contraction coupling in smooth muscle. Phosphorylation by a Ca2+, calmodulin-dependent kinase stimulates the actin-activated Mg2+-ATPase activity of smooth muscle myosin, suggesting that myosin phosphorylation regulates smooth muscle contraction. This hypothesis is supported by evidence that myosin is phosphorylated during contraction and dephosphorylated during relaxation of intact smooth muscles stimulated with a single agonist concentration. However, there is little information regarding the response to stimulation with various agonist concentrations. As the dose-response relationships for phosphorylation and tension should be similar if myosin phosphorylation does, in fact, regulate smooth muscle contraction, we studied myosin phosphorylation in tracheal smooth muscle stimulated with a broad range of concentrations of the cholinergic agonist, methacholine. The results of these experiments are consistent with the hypothesis that myosin phosphorylation regulates smooth muscle contraction but they indicate a relatively complex relationship between myosin phosphorylation and the generation of isometric tension.

UI MeSH Term Description Entries
D008688 Methacholine Compounds A group of compounds that are derivatives of beta-methylacetylcholine (methacholine). Compounds, Methacholine
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

P de Lanerolle, and J R Condit, and M Tanenbaum, and R S Adelstein
October 1980, The Journal of biological chemistry,
P de Lanerolle, and J R Condit, and M Tanenbaum, and R S Adelstein
August 1988, The Journal of pharmacology and experimental therapeutics,
P de Lanerolle, and J R Condit, and M Tanenbaum, and R S Adelstein
January 1999, Respiration physiology,
P de Lanerolle, and J R Condit, and M Tanenbaum, and R S Adelstein
May 1989, Journal of applied physiology (Bethesda, Md. : 1985),
P de Lanerolle, and J R Condit, and M Tanenbaum, and R S Adelstein
January 1992, The American journal of physiology,
P de Lanerolle, and J R Condit, and M Tanenbaum, and R S Adelstein
May 1991, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
P de Lanerolle, and J R Condit, and M Tanenbaum, and R S Adelstein
July 1985, The American journal of physiology,
P de Lanerolle, and J R Condit, and M Tanenbaum, and R S Adelstein
July 1991, Pflugers Archiv : European journal of physiology,
P de Lanerolle, and J R Condit, and M Tanenbaum, and R S Adelstein
September 1990, The Journal of biological chemistry,
P de Lanerolle, and J R Condit, and M Tanenbaum, and R S Adelstein
August 1990, The American journal of physiology,
Copied contents to your clipboard!