Physical-chemical properties of the estrogen receptor solubilized by micrococcal nuclease. 1985

A Geier, and M Haimsohn, and R Beery, and B Lunenfeld

The physical-chemical properties of the nuclear estrogen receptor from MCF-7 cells were determined. The receptor was solubilized by micrococcal nuclease. Nuclei were isolated from cells previously exposed to 10 nM [3H]estradiol. The amount of receptor released was parallel to the extent of chromatin solubilized, which suggested that the receptor is homogeneously distributed on the chromatin. Following mild nuclease digestion the excised receptor sedimented as an abundant 6-7 S form and as a less abundant approximately 12 S species. The 6-7 S form represented the receptor excised in association with linker DNA, while the approximately 12 S may represent receptor bound to linker DNA which remained associated with the nucleosome. Increasing the extensiveness of digestion resulted in one receptor form sedimenting at 5.6 S. Additional digestion with DNase I did not affect the sedimentation coefficient of the receptor. Sedimentation of the micrococcal nuclease hydrolysate in a 0.4 M KCl sucrose gradient resulted in a 4.2 S receptor form. The same receptor form was extracted from undigested nuclei with 0.4 M KCl. Using Sephadex G-200 column chromatography we have determined the Stokes radii (Rs), molecular weight (Mr) and frictional ratio (f/fo) for the 5.6 S and 4.2 S receptor forms. For the 5.6 S form: Rs = 7.04 nm, Mr = 163,000 and (f/fo) = 1.80. For the 4.2 S receptor, Rs = 4.45 nm, Mr = 77,000 and (f/fo) = 1.46. The ability of the nuclease solubilized 5.6 S receptor to bind DNA was tested using DNA-cellulose column and highly polymerized DNA. About 40% of the applied receptor bound to the column and could be eluted by high salt concentrated buffer. The 5.6 S receptor form was sedimented on sucrose gradient by the highly polymerized DNA. These results suggested that the receptor is bound in chromatin as a dimer or as a monomer in association with other protein(s) which complexed it with DNA.

UI MeSH Term Description Entries
D008836 Micrococcal Nuclease An enzyme that catalyzes the endonucleolytic cleavage to 3'-phosphomononucleotide and 3'-phospholigonucleotide end-products. It can cause hydrolysis of double- or single-stranded DNA or RNA. (From Enzyme Nomenclature, 1992) EC 3.1.31.1. Staphylococcal Nuclease,TNase,Thermonuclease,Thermostable Nuclease,Nuclease, Micrococcal,Nuclease, Staphylococcal,Nuclease, Thermostable
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D005260 Female Females

Related Publications

A Geier, and M Haimsohn, and R Beery, and B Lunenfeld
August 1986, Journal of steroid biochemistry,
A Geier, and M Haimsohn, and R Beery, and B Lunenfeld
March 1978, Nucleic acids research,
A Geier, and M Haimsohn, and R Beery, and B Lunenfeld
November 1978, Cancer research,
A Geier, and M Haimsohn, and R Beery, and B Lunenfeld
November 1961, The Journal of biological chemistry,
A Geier, and M Haimsohn, and R Beery, and B Lunenfeld
February 1985, Experimental cell research,
A Geier, and M Haimsohn, and R Beery, and B Lunenfeld
August 1984, Biochemistry international,
A Geier, and M Haimsohn, and R Beery, and B Lunenfeld
August 1978, Biochemistry,
A Geier, and M Haimsohn, and R Beery, and B Lunenfeld
April 1981, Biochemistry,
A Geier, and M Haimsohn, and R Beery, and B Lunenfeld
August 2017, Trends in genetics : TIG,
A Geier, and M Haimsohn, and R Beery, and B Lunenfeld
May 1979, Biochemistry,
Copied contents to your clipboard!