Differentiation and development of bundle sheath and mesophyll thylakoids in maize. Thylakoid polypeptide composition, phosphorylation, and organization of photosystem II. 1985

G Schuster, and I Ohad, and B Martineau, and W C Taylor

Photosynthetic electron flow, polypeptide pattern, presence of chlorophyll-protein complexes, and phosphorylation of thylakoid polypeptides have been investigated in differentiated mesophyll (M) and bundle sheath (B) thylakoids of the C4 plant Zea mays. The polypeptide pattern of M thylakoids and their photosynthetic electron flow are comparable to those of other green plants. B thylakoids exhibit only photosystem I (PSI) activity, contain only traces of the PSII light harvesting (LHCII) polypeptide, do not bind [3H] diuron, and lack polypeptides of the water-oxidation complex of PSII and the herbicide binding 32-kDa polypeptide, as detected by specific antibodies. However, B thylakoids possess a partially active PSII reaction center, as demonstrated by light-dependent reduction of silicomolybdate with 1,5-diphenylcarbazide (DPC) as an electron donor, and the presence of the PSII reaction center polypeptides of 44-47 kDa. Only one chlorophyll a-protein complex, corresponding to the PSI reaction center-core antenna, was detectable in B thylakoids, as opposed to chlorophyll a and chlorophyll a,b-protein complexes present in M thylakoids. The light-dependent, membrane-bound kinase activity present in M thylakoids could not be detected in B thylakoids which, nevertheless, contain a protein kinase able to phosphorylate casein. A total of 19 differences between the electrophoretic pattern of B and M thylakoid polypeptides were observed. The mRNA coding for the LHCII polypeptide is primarily, if not exclusively, localized in M cells. The development of PSII complex precedes that of PSI during the differentiation of B and M chloroplasts in expanding leaves of light-grown plants and during the greening of dark-grown etiolated seedlings. The differentiation of the maize leaf into cells programmed to form B or M chloroplasts does not require light. In light-grown plants, the differentiation of B and M thylakoids occurred progressively from the base of the leaf and was completed at 4-5 cm from the leaf base.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010788 Photosynthesis The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001) Calvin Cycle,Calvin-Benson Cycle,Calvin-Benson-Bassham Cycle,Carbon Fixation, Photosynthetic,Reductive Pentose Phosphate Cycle,Dark Reactions of Photosynthesis,Calvin Benson Bassham Cycle,Calvin Benson Cycle,Cycle, Calvin,Cycle, Calvin-Benson,Cycle, Calvin-Benson-Bassham,Photosynthesis Dark Reaction,Photosynthesis Dark Reactions,Photosynthetic Carbon Fixation
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002734 Chlorophyll Porphyrin derivatives containing magnesium that act to convert light energy in photosynthetic organisms. Phyllobilins,Chlorophyll 740
D003313 Zea mays A plant species of the family POACEAE. It is a tall grass grown for its EDIBLE GRAIN, corn, used as food and animal FODDER. Corn,Indian Corn,Maize,Teosinte,Zea,Corn, Indian
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

G Schuster, and I Ohad, and B Martineau, and W C Taylor
September 2007, Functional plant biology : FPB,
G Schuster, and I Ohad, and B Martineau, and W C Taylor
February 1996, Cytometry,
G Schuster, and I Ohad, and B Martineau, and W C Taylor
November 1995, European journal of biochemistry,
G Schuster, and I Ohad, and B Martineau, and W C Taylor
October 2020, Functional plant biology : FPB,
G Schuster, and I Ohad, and B Martineau, and W C Taylor
February 1977, Biochimica et biophysica acta,
G Schuster, and I Ohad, and B Martineau, and W C Taylor
February 2004, Plant & cell physiology,
G Schuster, and I Ohad, and B Martineau, and W C Taylor
February 2022, The Plant journal : for cell and molecular biology,
G Schuster, and I Ohad, and B Martineau, and W C Taylor
October 2009, Biochimica et biophysica acta,
G Schuster, and I Ohad, and B Martineau, and W C Taylor
April 2006, Journal of plant physiology,
Copied contents to your clipboard!