Hepatic peroxisomal and mitochondrial fatty acid oxidation in the riboflavin-deficient rat. 1985

P S Brady, and C L Hoppel

The effects of riboflavin deficiency on hepatic peroxisomal and mitochondrial palmitoyl-CoA oxidation were examined in weanling Wistar-strain male rats. The specific activities of peroxisomal catalase and palmitoyl-CoA-dependent NAD+ reduction were not affected by up to 10 weeks of riboflavin deficiency. In contrast, the specific activity of mitochondrial carnitine-dependent palmitoyl-CoA oxidation was depressed by 75% at 10 weeks of deficiency. The amount of peroxisomal protein per g of liver was not affected by riboflavin deficiency, whereas, expressed per liver, both riboflavin-deficient and pair-fed controls showed decreased peroxisomal protein compared with controls fed ad libitum. Hepatic mitochondria, but not peroxisomes, were sensitive to riboflavin deficiency.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008830 Microbodies Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes. Glycosomes,Glycosome,Microbody
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010171 Palmitoyl Coenzyme A A fatty acid coenzyme derivative which plays a key role in fatty acid oxidation and biosynthesis. Palmitoyl CoA,Hexadecanoyl CoA,Palmityl CoA,CoA, Hexadecanoyl,CoA, Palmitoyl,CoA, Palmityl,Coenzyme A, Palmitoyl
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D000214 Acyl Coenzyme A S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation. Acyl CoA,Fatty Acyl CoA,Long-Chain Acyl CoA,Acyl CoA, Fatty,Acyl CoA, Long-Chain,CoA, Acyl,CoA, Fatty Acyl,CoA, Long-Chain Acyl,Coenzyme A, Acyl,Long Chain Acyl CoA

Related Publications

P S Brady, and C L Hoppel
January 1993, Surgery today,
P S Brady, and C L Hoppel
January 1983, Diabete & metabolisme,
P S Brady, and C L Hoppel
March 1990, The American journal of physiology,
P S Brady, and C L Hoppel
October 1980, Biochemical Society transactions,
P S Brady, and C L Hoppel
December 2012, Current drug metabolism,
P S Brady, and C L Hoppel
January 2003, Advances in experimental medicine and biology,
P S Brady, and C L Hoppel
January 1995, Ryoikibetsu shokogun shirizu,
Copied contents to your clipboard!