Responses of solitary tract nucleus neurons to taste and mechanical stimulations of the oral cavity in decerebrate rats. 1985

T Hayama, and S Ito, and H Ogawa

Physiological characteristics of 45 taste and 15 mechanoreceptive units were examined in the solitary tract nucleus (NTS) of rats decerebrated at the pre- or midcollicular level, and compared with previous findings in the intact rat. The rostro-caudal extent of the area, where taste and mechanoreceptive neurons were recorded, was almost the same in the decerebrate rat as that in intact rat. The spontaneous discharge rate was significantly lower in the decerebrate rat than in the intact rat. The taste profile of the NTS units in decerebrate rats was quite different from that in intact rats; significant decreases in correlation coefficients were found between certain pairs of taste stimuli and spontaneous discharge rate, e.g. NaCl-quinine, sucrose-quinine. A large number of taste (18 of 31) and mechanoreceptive (12 of 15) units examined had receptive fields (RFs) on the palate, and four taste and two mechanoreceptive units on the circumvallate area. This contrasts with the findings in the intact rat. Some taste (n = 1) and mechanoreceptive units (n = 2) had large RFs. Taste units with different RF locations showed different taste profiles. Acute i.v. injection of amobarbital sodium affected only the response magnitude of taste units, suggesting that most of the differences between intact and decerebrate rats might be caused by decerebration. The present findings indicate that neural structures above the pre- or midcollicular level have tonic inhibitory or facilitatory effects on the response properties of NTS taste units.

UI MeSH Term Description Entries
D008297 Male Males
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009055 Mouth The oval-shaped oral cavity located at the apex of the digestive tract and consisting of two parts: the vestibule and the oral cavity proper. Oral Cavity,Cavitas Oris,Cavitas oris propria,Mouth Cavity Proper,Oral Cavity Proper,Vestibule Oris,Vestibule of the Mouth,Cavity, Oral
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D005260 Female Females
D000654 Amobarbital A barbiturate with hypnotic and sedative properties (but not antianxiety). Adverse effects are mainly a consequence of dose-related CNS depression and the risk of dependence with continued use is high. (From Martindale, The Extra Pharmacopoeia, 30th ed, p565) Amylobarbitone,Pentymal,Amobarbital Sodium,Amsal,Amylbarb sodium,Amylobeta,Amytal,Amytal Sodium,Barbamyl,Eunoctal,Isoamitil Sedante,Isonal,Neur-Amyl,Novamobarb,Placidel,Sodium Amobarbital,Sodium Amytal,Transital,Amobarbital, Sodium,Sodium, Amobarbital

Related Publications

T Hayama, and S Ito, and H Ogawa
July 1980, Neuroscience letters,
T Hayama, and S Ito, and H Ogawa
September 1993, Journal of neurophysiology,
T Hayama, and S Ito, and H Ogawa
December 2011, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
T Hayama, and S Ito, and H Ogawa
October 1983, Journal of neurophysiology,
T Hayama, and S Ito, and H Ogawa
October 1991, Journal of neurophysiology,
T Hayama, and S Ito, and H Ogawa
March 2003, Brain research,
T Hayama, and S Ito, and H Ogawa
November 2006, Journal of neurophysiology,
Copied contents to your clipboard!