Responsiveness of solitario-parabrachial relay neurons to taste and mechanical stimulation applied to the oral cavity in rats. 1984

H Ogawa, and T Imoto, and T Hayama

A total of 311 units, responsive to natural stimulation of the oral cavity, were isolated from the rostral part of the solitary tract nucleus (NTS) of rats. Of these, 169 "taste neurons", activated by taste stimulation, and 142 mechanoreceptive units, exclusively sensitive to mechanical stimulation of the oral cavity, were found. Most taste units (62.3%) were also excited by mechanical stimulation. Forty-three (34.1%) of the 126 taste units examined were identified as solitario -parabrachial relay (SP) neurons by antidromic stimulation from the ipsilateral dorsal pons, while only eleven (12.6%) of the 87 mechano-receptive units were SP neurons. Taste SP neurons could be divided into two subgroups according to their antidromic latency; the fast SP units with an antidromic latency shorter than 9 ms and slow SP units with a longer antidromic latency. These two subgroups were not differentiated in any physiological properties except that the fast SP neurons were frequently excited by sucrose. Taste neurons were classified according to the best stimulus of the four basic taste solutions to produce the largest number of discharges in each neuron. All types of taste neurons were found among the SP and non-SP neurons, but only a small number of quinine-best neurons (n = 2) were found in the SP neuron group compared to the number of quinine-best neurons in the non-SP neuron group (n = 10). A histological examination of the recording sites revealed that taste relay neurons were found at the central or dorsal part of the nucleus but mechanoreceptive relay neurons were found at the peripheral part, although relay and non-relay neurons of either class were intermingled in the nucleus.

UI MeSH Term Description Entries
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009055 Mouth The oval-shaped oral cavity located at the apex of the digestive tract and consisting of two parts: the vestibule and the oral cavity proper. Oral Cavity,Cavitas Oris,Cavitas oris propria,Mouth Cavity Proper,Oral Cavity Proper,Vestibule Oris,Vestibule of the Mouth,Cavity, Oral
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012677 Sensation The process in which specialized SENSORY RECEPTOR CELLS transduce peripheral stimuli (physical or chemical) into NERVE IMPULSES which are then transmitted to the various sensory centers in the CENTRAL NERVOUS SYSTEM. Sensory Function,Organoleptic,Function, Sensory,Functions, Sensory,Sensations,Sensory Functions

Related Publications

H Ogawa, and T Imoto, and T Hayama
August 1984, The Journal of general physiology,
H Ogawa, and T Imoto, and T Hayama
February 1995, Behavioral neuroscience,
H Ogawa, and T Imoto, and T Hayama
March 2016, Journal of neurophysiology,
H Ogawa, and T Imoto, and T Hayama
March 1984, Experimental neurology,
H Ogawa, and T Imoto, and T Hayama
January 1982, Experimental brain research,
H Ogawa, and T Imoto, and T Hayama
January 1981, Journal of neurophysiology,
H Ogawa, and T Imoto, and T Hayama
October 1982, Physiology & behavior,
Copied contents to your clipboard!