Intracellular calcium transients and developed tension in rat heart muscle. A mechanism for the negative interval-strength relationship. 1985

C H Orchard, and E G Lakatta

The purposes of the present study were to determine (a) whether changes of intracellular [Ca2+] (Cai) can account for the decrease of developed tension observed in rat heart muscle when stimulation rate is increased, and (b) whether the effect of stimulation rate on Cai is altered in conditions in which the rate of repriming of the sarcoplasmic reticulum (SR) is altered, as when perfusate [Ca2+] (Cao) is increased, and in heart muscle from senescent animals. The photoprotein aequorin was used to monitor Cai in rat papillary muscles. In muscles from 6-mo-old rats, increasing the stimulation rate in the range 0.2-0.66 Hz led to parallel decreases of both the aequorin light transient and developed tension when Cao was 2 mM. When Cao was increased to 4 mM, changes in the stimulation rate had less effect on both the light transient and tension. At 8 mM Cao, changing the stimulation rate had no effect on either the light transient or developed tension. Papillary muscles from 24-mo-old rats, in which SR function is likely to be depressed, exhibited a prolonged Ca2+ transient and twitch. At a Cao of 4 or 8 mM, increasing the stimulation rate from 0.33 to 0.66 Hz still led to decreases in the size of the aequorin light transient and developed tension in these muscles. Developed tension and aequorin light responded to increases of Cao in the same way in both groups of muscles. We conclude that under the conditions of our experiments, developed tension is determined by Cai. The negative interval-strength relationship observed when Cao is in the physiological range can be accounted for by a time-dependent recycling of Ca2+ by the SR. The effects of increasing Cao and the age-related differences observed at high Cao can also be accounted for using this model.

UI MeSH Term Description Entries
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000331 Aequorin A photoprotein isolated from the bioluminescent jellyfish Aequorea. It emits visible light by an intramolecular reaction when a trace amount of calcium ion is added. The light-emitting moiety in the bioluminescence reaction is believed to be 2-amino-3-benzyl-5-(p-hydroxyphenyl)pyrazine (AF-350). Aequorine
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums

Related Publications

C H Orchard, and E G Lakatta
October 1991, General physiology and biophysics,
C H Orchard, and E G Lakatta
December 2008, Archives of histology and cytology,
C H Orchard, and E G Lakatta
August 1977, Journal of molecular and cellular cardiology,
C H Orchard, and E G Lakatta
January 1993, Advances in experimental medicine and biology,
C H Orchard, and E G Lakatta
August 1987, Pflugers Archiv : European journal of physiology,
C H Orchard, and E G Lakatta
September 1991, Circulation research,
Copied contents to your clipboard!