Temperature-jump studies of merocyanine 540 relaxation kinetics in lipid bilayer membranes. 1985

A S Verkman, and M P Frosch

The temperature-jump technique was used to study the rapid kinetics of merocyanine 540 (M-540) interactions with single-walled phosphatidylcholine (PC) vesicles. The absorption spectrum of M-540 in PC vesicles has an isosbestic point at 560 nm at low [PC]/[M-540], where solution M-540 and membrane-bound M-540 dimers are present, and an isosbestic point at 548 nm at high [PC]/[M-540], where membrane-bound M-540 monomers and dimers are present. In response to a 15-kV discharge across a solution containing M-540 and PC vesicles (2.5 degrees C temperature increment), there was a rapid increase in absorbance at 575 nm (less than 5 microseconds) followed by a slower (approximately 1 ms), monoexponential relaxation process of opposite sign and approximately equal amplitude to the initial rise. The amplitude of the slower process was wavelength-dependent and reversed sign at approximately 540 nm. The slower relaxation time constant decreased as [PC] was increased at constant [M-540]. A proposed model for the potential sensitivity of M-540 involves intramembrane reorientation of dye molecules and dimerization. The results obtained here suggest that reorientation of dye molecules is the rate-limiting step, with a rate constant for reorientation from parallel to perpendicular to the plane of the membrane of 1340 +/- 200 s-1 at 23 degrees C.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D011744 Pyrimidinones Heterocyclic compounds known as 2-pyrimidones (or 2-hydroxypyrimidines) and 4-pyrimidones (or 4-hydroxypyrimidines) with the general formula C4H4N2O. Pyrimidinone,Pyrimidone,Pyrimidones
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

A S Verkman, and M P Frosch
June 1987, Biochemistry,
A S Verkman, and M P Frosch
December 1976, Biochimica et biophysica acta,
A S Verkman, and M P Frosch
December 1993, Journal of fluorescence,
A S Verkman, and M P Frosch
November 1981, Quarterly reviews of biophysics,
A S Verkman, and M P Frosch
January 2002, Bioelectrochemistry (Amsterdam, Netherlands),
A S Verkman, and M P Frosch
December 2001, Die Pharmazie,
A S Verkman, and M P Frosch
May 1974, The Journal of biological chemistry,
Copied contents to your clipboard!