Transport kinetics of hydrophobic ions in lipid bilayer membranes. Charge-pulse relaxation studies. 1976

R Benz, and P Läuger, and K Janko

A modified version of the charge-pulse relaxation technique with improved time resolution was applied to the study of transport kinetics of hydrophobic ions (tetraphenylborate, dipicrylamine) through lipid bilayer membranes. Besides a better time resolution the charge-pulse method has the additional advantage that the perturbation of the membrane can be kept small (voltage amplitudes between 1 and 10 mV). The results of the analysis support the model proposed earlier, according to which the overall transport takes place in three consecutive steps, adsorption of the ion from water to the interface, translocation to the opposite interface, and desorption into the aqueous phase. The translocation rate constant ki and the partition coefficient gamma of the hydrophobic ion between water and the membrane were measured for lecithins with different mono-unsaturated fatty acid residues. Increasing the chain length of the fatty acid from C16 to C24 resulted in a decrease of ki by a factor of about 9 in the case of tetraphenylborate and by a factor of about 17 in the case of dipicrylamine.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D004159 Diphenylamine In humans it may be irritating to mucous membranes. Methemoglobinemia has been produced experimentally. In veterinary use, it is one of active ingredients in topical agents for prevention and treatment of screwworm infestation. An indicator in tests for nitrate poisoning.
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005231 Fatty Acids, Unsaturated FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds. Fatty Acids, Polyunsaturated,Polyunsaturated Fatty Acid,Unsaturated Fatty Acid,Polyunsaturated Fatty Acids,Acid, Polyunsaturated Fatty,Acid, Unsaturated Fatty,Acids, Polyunsaturated Fatty,Acids, Unsaturated Fatty,Fatty Acid, Polyunsaturated,Fatty Acid, Unsaturated,Unsaturated Fatty Acids
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

R Benz, and P Läuger, and K Janko
February 1978, Biochimica et biophysica acta,
R Benz, and P Läuger, and K Janko
September 1971, The Journal of membrane biology,
R Benz, and P Läuger, and K Janko
March 1983, Biophysical chemistry,
R Benz, and P Läuger, and K Janko
July 1979, The Journal of membrane biology,
R Benz, and P Läuger, and K Janko
January 1978, Biophysical journal,
R Benz, and P Läuger, and K Janko
December 1985, Biochemistry,
R Benz, and P Läuger, and K Janko
January 1975, The Journal of membrane biology,
R Benz, and P Läuger, and K Janko
February 1993, Quarterly reviews of biophysics,
R Benz, and P Läuger, and K Janko
December 1977, The Journal of membrane biology,
Copied contents to your clipboard!