Structural arrangement of polymers within the wall of Streptococcus faecalis. 1978

H C Tsien, and G D Shockman, and M L Higgins

The structure of the cell wall of Streptococcus faecalis was studied in thin sections and freeze fractures of whole cells and partially purified wall fractions. Also, the structures of wall preparations treated with hot trichloroacetic acid to remove non-peptidoglycan wall polymers were compared with wall preparations that possess a full complement of accessory polymers. The appearance of the wall varied with the degree of hydration of preparations and physical removal of the cell membrane from the wall before study. Seen in freeze fractures of whole cells, the fully hydrated wall seemed to be a thick, largely amorphic layer. Breaking cells with beads caused the cell membrane to separate from the wall and transformed the wall from a predominantly amorphic layer to a structure seemingly made up of two rows of "cobblestones" enclosing a central channel of lower density. Dehydration of walls seemingly caused the cobblestones to be transformed into two bands which continued to be separated by a channel. This channel was also observed in isolated wall preparations treated with hot trichloroacetic acid to remove non-peptidoglycan polymers. These observations are consistent with the interpretation that both peptidogylcan and non-peptidoglycan polymers are concentrated at the outer and inner surfaces of cell walls. These observations are discussed in relation to possible models of wall structure and assembly.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010457 Peptidoglycan A structural polymer of the bacterial cell envelope consisting of sugars and amino acids which is responsible for both shape determination and cellular integrity under osmotic stress in virtually all bacteria. Murein,Pseudomurein
D011135 Polysaccharides, Bacterial Polysaccharides found in bacteria and in capsules thereof. Bacterial Polysaccharides
D002473 Cell Wall The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents. Cell Walls,Wall, Cell,Walls, Cell
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D013293 Enterococcus faecalis A species of gram-positive, coccoid bacteria commonly isolated from clinical specimens and the human intestinal tract. Most strains are nonhemolytic. Streptococcus Group D,Streptococcus faecalis
D013682 Teichoic Acids Bacterial polysaccharides that are rich in phosphodiester linkages. They are the major components of the cell walls and membranes of many bacteria. Glycerol Teichoic Acid,Glycerol Teichoic Acids,Acid, Glycerol Teichoic,Acids, Glycerol Teichoic,Acids, Teichoic
D014238 Trichloroacetic Acid A strong acid used as a protein precipitant in clinical chemistry and also as a caustic for removing warts. Acide trichloracetique,Rubidium Trichloroacetate,Sodium Trichloroacetate,Acid, Trichloroacetic,Trichloroacetate, Rubidium,Trichloroacetate, Sodium,trichloracetique, Acide
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

H C Tsien, and G D Shockman, and M L Higgins
August 1979, Journal of general microbiology,
H C Tsien, and G D Shockman, and M L Higgins
June 1980, Fukuoka igaku zasshi = Hukuoka acta medica,
H C Tsien, and G D Shockman, and M L Higgins
April 1984, Journal of general microbiology,
H C Tsien, and G D Shockman, and M L Higgins
February 1970, Journal of bacteriology,
H C Tsien, and G D Shockman, and M L Higgins
August 1974, Canadian journal of microbiology,
H C Tsien, and G D Shockman, and M L Higgins
February 1958, The Journal of biological chemistry,
H C Tsien, and G D Shockman, and M L Higgins
January 1984, Microbiology and immunology,
H C Tsien, and G D Shockman, and M L Higgins
March 1971, Journal of bacteriology,
H C Tsien, and G D Shockman, and M L Higgins
December 1981, Journal of general microbiology,
H C Tsien, and G D Shockman, and M L Higgins
June 1964, Canadian journal of microbiology,
Copied contents to your clipboard!