Evidence for allosterism in in vitro DNA synthesis on RNA templates. 1974

L F Cavalieri, and M J Modak, and S L Marcus

Hemoglobin mRNA and (rA)(n).(dT)(10) have been used as primer-templates in a kinetic study of DNA synthesis with Escherichia coli DNA polymerase I (DNA nucleotidyl transferase, EC 2.7.7.7) and Mason-Pfizer monkey virus reverse transcriptase (RNA-directed DNA polymerase). The rate versus enzyme concentration curve is sigmoidal and is consistent with a cooperative phenomenon. The results could be interpreted in terms of the formation of an active complex containing enzyme dimers (or oligomers) on the primer-template. We have also observed sigmoidal kinetics in rate versus deoxynucleotide triphosphate concentration. These results are consistent with an allosteric mechanism in which the triphosphates act as both modifiers and DNA precursors. In the critical range, a 6- to 8-fold increase in both enzyme and triphosphate concentrations can lead to a 1500-fold increase in the rate of synthesis on an RNA template. Thus, small changes in enzyme and precursor concentrations could play a regulatory role in vivo.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009858 Oncogenic Viruses Viruses that produce tumors. Tumor Viruses,Oncogenic Virus,Tumor Virus,Virus, Oncogenic,Virus, Tumor,Viruses, Oncogenic,Viruses, Tumor
D011119 Polynucleotides BIOPOLYMERS composed of NUCLEOTIDES covalently bonded in a chain. The most common examples are DNA and RNA chains. Polynucleotide
D003597 Cytosine Nucleotides A group of pyrimidine NUCLEOTIDES which contain CYTOSINE. Cytidine Phosphates,Nucleotides, Cytosine,Phosphates, Cytidine
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004254 DNA Nucleotidyltransferases Enzymes that catalyze the incorporation of deoxyribonucleotides into a chain of DNA. EC 2.7.7.-. Nucleotidyltransferases, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

L F Cavalieri, and M J Modak, and S L Marcus
May 1978, Biokhimiia (Moscow, Russia),
L F Cavalieri, and M J Modak, and S L Marcus
August 1984, Proceedings of the National Academy of Sciences of the United States of America,
L F Cavalieri, and M J Modak, and S L Marcus
August 1972, Nature: New biology,
L F Cavalieri, and M J Modak, and S L Marcus
January 1981, Vestnik Akademii meditsinskikh nauk SSSR,
L F Cavalieri, and M J Modak, and S L Marcus
May 1993, Journal of biochemical and biophysical methods,
L F Cavalieri, and M J Modak, and S L Marcus
February 1969, Biochemical and biophysical research communications,
L F Cavalieri, and M J Modak, and S L Marcus
October 1977, Biochimica et biophysica acta,
L F Cavalieri, and M J Modak, and S L Marcus
January 1996, Nature,
L F Cavalieri, and M J Modak, and S L Marcus
January 1966, Cold Spring Harbor symposia on quantitative biology,
L F Cavalieri, and M J Modak, and S L Marcus
November 1987, Nucleic acids research,
Copied contents to your clipboard!