A class of strong inhibitors of microsomal monooxygenases: the ellipticines. 1979

P Lesca, and E Rafidinarivo, and P Lecointe, and D Mansuy

Ellipticine (E) and its 9-hydroxy derivative inhibit strongly various liver monooxygenase activities mediated by microsomes from control and phenobarbital (PB), benzo[alpha]pyrene (BP) or Aroclor 1254 (Aroclor)-pretreated rats. The inhibition constants, Ki, are remarkably low, and often smaller than 1 micron, particularly in the case of microsomes containing cytochrome P-448. The inhibitory potency (I50) of 9-hydroxyellipticine (9-OHE) is larger (about ten-fold) than the one of classical inhibitors (metyrapone or 7,8-benzoflavone (7,8-BF)), whatever the activities studied and the induction of microsomes. Differences exist between the mechanisms of inhibition according to the form of cytochrome P-450 present in microsomes of differently pretreated rats; whichever the activities studied, one observes: (a) a competitive inhibition towards the activity of non-induced or PB-induced microsomes and (b) a non-competitive inhibition towards the activity of Aroclor or BP-induced microsomes, at variance with 7,8-BF. These results are in good agreement with the interaction properties of the ellipticines with microsomal cytochromes P-450.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D003640 Dealkylation The removing of alkyl groups from a compound. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Dealkylations
D004611 Ellipticines Pyrido-CARBAZOLES originally discovered in the bark of OCHROSIA ELLIPTICA. They inhibit DNA and RNA synthesis and have immunosuppressive properties.
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D000470 Alkaloids Organic nitrogenous bases. Many alkaloids of medical importance occur in the animal and vegetable kingdoms, and some have been synthesized. (Grant & Hackh's Chemical Dictionary, 5th ed) Alkaloid,Plant Alkaloid,Plant Alkaloids,Alkaloid, Plant,Alkaloids, Plant
D000633 Aminopyrine N-Demethylase Aminopyrine N Demethylase,Demethylase, Aminopyrine N,N Demethylase, Aminopyrine,N-Demethylase, Aminopyrine

Related Publications

P Lesca, and E Rafidinarivo, and P Lecointe, and D Mansuy
January 1990, Ukrainskii biokhimicheskii zhurnal (1978),
P Lesca, and E Rafidinarivo, and P Lecointe, and D Mansuy
December 1972, Biochemical pharmacology,
P Lesca, and E Rafidinarivo, and P Lecointe, and D Mansuy
January 1988, Drug metabolism and disposition: the biological fate of chemicals,
P Lesca, and E Rafidinarivo, and P Lecointe, and D Mansuy
October 1990, Biokhimiia (Moscow, Russia),
P Lesca, and E Rafidinarivo, and P Lecointe, and D Mansuy
July 1977, Biokhimiia (Moscow, Russia),
P Lesca, and E Rafidinarivo, and P Lecointe, and D Mansuy
July 1983, Biochimica et biophysica acta,
P Lesca, and E Rafidinarivo, and P Lecointe, and D Mansuy
May 1979, Chemico-biological interactions,
P Lesca, and E Rafidinarivo, and P Lecointe, and D Mansuy
January 1993, Drug metabolism and disposition: the biological fate of chemicals,
P Lesca, and E Rafidinarivo, and P Lecointe, and D Mansuy
January 1989, Voprosy onkologii,
Copied contents to your clipboard!