Investigation of solvent accessibility of the fluorotyrosyl residues of M13 coat protein in deoxycholate micelles and phospholipid vesicles. 1979

D S Hagen, and J H Weiner, and B D Sykes

We have utilized a nonperturbing nuclear magnetic resonance technique, specifically measuring sensitivity of the chemical shift of fluorotyrosyl residues to change in solvent from H2O to D2O, to demonstrate that the tyrosyl residues of fluorotyrosyl M13 coat protein in phospholipid vesicles are not accessible to solvent i.e., are buried in the hydrophobic portion of the bilayer. The two fluorotyrosyl residues of the protein did show partial exposure to solvent (42% and 65% with respect to aqueous m-fluorotyrosine) when the protein was incorporated into deoxycholate micelles, pointing to differences in conformation of micellar protein with respect to vesicle-associated protein. M13 coat protein in phospholipid vesicles was not sensitive to lactoperoxidase-catalyzed iodination, supporting the NMR results. Coat protein in deoxycholate micelles showed release of fluorotyrosyl residues upon Pronase digestion, but only after an observed change in environment. The observed changes suggest that proteolytic digestion studies of membrane proteins should be interpreted with the possibility of artifacts related to conformational changes in mind. M13 coat protein in phospholipid vesicles did not demonstrate release of fluorotyrosine by Pronase, again pointing to differences between protein in micelles and in vesicles and corroborating the NMR result.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008823 Micelles Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS. Micelle
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011402 Pronase A proteolytic enzyme obtained from Streptomyces griseus. Pronase E,Pronase P,Protease XIV,XIV, Protease
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D003102 Colloids Two-phase systems in which one is uniformly dispersed in another as particles small enough so they cannot be filtered or will not settle out. The dispersing or continuous phase or medium envelops the particles of the discontinuous phase. All three states of matter can form colloids among each other. Hydrocolloids,Colloid,Hydrocolloid
D003840 Deoxycholic Acid A bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Deoxycholate,Desoxycholic Acid,Kybella,Choleic Acid,Deoxycholic Acid, 12beta-Isomer,Deoxycholic Acid, 3beta-Isomer,Deoxycholic Acid, 5alpha-Isomer,Deoxycholic Acid, Disodium Salt,Deoxycholic Acid, Magnesium (2:1) Salt,Deoxycholic Acid, Monoammonium Salt,Deoxycholic Acid, Monopotassium Salt,Deoxycholic Acid, Monosodium Salt,Deoxycholic Acid, Sodium Salt, 12beta-Isomer,Dihydroxycholanoic Acid,Lagodeoxycholic Acid,Sodium Deoxycholate,12beta-Isomer Deoxycholic Acid,3beta-Isomer Deoxycholic Acid,5alpha-Isomer Deoxycholic Acid,Deoxycholate, Sodium,Deoxycholic Acid, 12beta Isomer,Deoxycholic Acid, 3beta Isomer,Deoxycholic Acid, 5alpha Isomer

Related Publications

D S Hagen, and J H Weiner, and B D Sykes
September 1995, Biochemistry,
D S Hagen, and J H Weiner, and B D Sykes
May 1990, Biochimica et biophysica acta,
D S Hagen, and J H Weiner, and B D Sykes
November 1994, Biochemistry,
D S Hagen, and J H Weiner, and B D Sykes
April 2000, Protein science : a publication of the Protein Society,
Copied contents to your clipboard!