Female steroid hormones and target cell nuclei. 1974

B W O'Malley, and A R Means

The data discussed herein demonstrate the great variation in target-tissue response that can occur after administration of steroid hormones. The female sex steroids can exert regulatory effects on the synthesis, activity, and possibly even the degradation of tissue enzymes and structural proteins. Each response, nevertheless, appears to be dependent on the synthesis of nuclear RNA. In many instances, the steroid actually promotes a qualitative change in the base composition and sequence of the RNA synthesized by the target cell, implying a specific effect on gene transcription. Most important is our direct quantitative evidence that sex steroids cause a net increase in the intracellular amounts of specific mRNA molecules in target tissues. It thus appears that we are discovering a pattern of steroid hormone action which includes (Fig. 1): (i) uptake of the hormone by the target cell and binding to a specific cytoplasmic receptor protein; (ii) transport of the steroid-receptor complex to the nucleus; (iii) binding of this "active" complex to specific "acceptor" sites on the genome (chromatin DNA and acidic protein); (iv) activation of the transcriptional apparatus resulting in the appearance of new RNA species which includes specific mRNA's; (v) transport of the hormone-induced RNA to the cytoplasm resulting in synthesis of new proteins on cytoplasmic ribosomes; and (vi) the occurrence of the specific steroid-mediated "functional response" characteristic of that particular target tissue. To elucidate fully the mechanism of steroid hormone action we must study the biochemistry of the process by which information held by the steroid hormone-receptor complex is transferred to the nuclear transcription apparatus. If our assumptions are correct, we should ultimately be able to discover how this hormone-receptor complex exerts a specific regulatory effect on nuclear RNA metabolism. Such regulation might be achieved (i) by direct effects on chromatin template leading to increased gene transcription and thus RNA synthesis; (ii) by activation of the polymerase complex itself; (iii) by inhibition of RNA breakdown; or (iv) by intranuclear processing of large precursor molecules so that smaller biologically active sequences are produced, and (v) by transport of RNA from the nucleus to the cytoplasmic sites of cellular protein synthesis.

UI MeSH Term Description Entries
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D010057 Oviducts Ducts that serve exclusively for the passage of eggs from the ovaries to the exterior of the body. In non-mammals, they are termed oviducts. In mammals, they are highly specialized and known as FALLOPIAN TUBES. Oviduct
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot

Related Publications

B W O'Malley, and A R Means
December 1967, The Gerontologist,
B W O'Malley, and A R Means
December 1978, Molecular and cellular endocrinology,
B W O'Malley, and A R Means
April 1989, Casopis lekaru ceskych,
B W O'Malley, and A R Means
January 2002, Duodecim; laaketieteellinen aikakauskirja,
B W O'Malley, and A R Means
October 1978, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
B W O'Malley, and A R Means
January 2001, Progress in brain research,
B W O'Malley, and A R Means
March 1979, Journal of steroid biochemistry,
B W O'Malley, and A R Means
January 1978, Methods in cell biology,
B W O'Malley, and A R Means
September 2005, Hormones and behavior,
B W O'Malley, and A R Means
February 2004, Journal of the Society for Gynecologic Investigation,
Copied contents to your clipboard!