Effects of thio-group modification and Ca2+ on agonist-specific state transitions of a central nicotinic acetylcholine receptor. 1979

R J Lukas, and H Morimoto, and E L Bennett

Agonist-binding affinities of central nervous system nicotinic acetylcholine receptors (nAcChR) are sensitive to the duration of exposure to agonist. These agonist-induced changes in receptor state may be mimicked by appropriate modification of receptor thio groups and/or by manipulation of solvent ionic composition. In the absence of Ca2+, the concentration of acetylcholine (AcCh) necessary to prevent half of specific 3H-labeled alpha-bungarotoxin binding is approximately 1 mM for nAcChR treated with dithiothreitol (DTT) or DTT-N-ethylmaleimide (low-affinity states) and approximately 40 microM for nAcChR treated with DTT-5,5'-dithiobis(2-nitrobenzoic acid) or for native nAcChR pretreated with AcCh (high-affinity states). Addition of Ca2+ results in an increase in the effectiveness of AcCh toward blocking toxin binding. None of these treatments alters toxin or antagonist binding nor are there observed differences in Hill numbers for agonist binding. Agonists competitively inhibit toxin binding to low-affinity states, but noncompetitive inhibition is observed for binding to high-affinity states. Values of AcCh dissociation constants estimated from these data fall within the range of values determined physiologically with nAcChR from other systems. The data indicate that the redox state of brain nAcChR thio groups and Ca2+ may mediate physiologically important changes in the receptor state during activation and desensitization.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009579 Nitrobenzoates Benzoic acid or benzoic acid esters substituted with one or more nitro groups. Nitrobenzoic Acids,Acids, Nitrobenzoic
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation

Related Publications

R J Lukas, and H Morimoto, and E L Bennett
September 2015, Neuropharmacology,
R J Lukas, and H Morimoto, and E L Bennett
September 1996, Biochemistry,
R J Lukas, and H Morimoto, and E L Bennett
September 2003, Annals of the New York Academy of Sciences,
R J Lukas, and H Morimoto, and E L Bennett
April 1984, FEBS letters,
R J Lukas, and H Morimoto, and E L Bennett
December 1992, FEBS letters,
R J Lukas, and H Morimoto, and E L Bennett
November 2007, Journal of neurochemistry,
R J Lukas, and H Morimoto, and E L Bennett
January 2007, Journal of neurophysiology,
R J Lukas, and H Morimoto, and E L Bennett
January 2024, Neuroscience letters,
Copied contents to your clipboard!