| D007477 |
Ions |
An atom or group of atoms that have a positive or negative electric charge due to a gain (negative charge) or loss (positive charge) of one or more electrons. Atoms with a positive charge are known as CATIONS; those with a negative charge are ANIONS. |
|
|
| D007700 |
Kinetics |
The rate dynamics in chemical or physical systems. |
|
|
| D008433 |
Mathematics |
The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) |
Mathematic |
|
| D008564 |
Membrane Potentials |
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). |
Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences |
|
| D008954 |
Models, Biological |
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. |
Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic |
|
| D009994 |
Osmolar Concentration |
The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. |
Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic |
|
| D004553 |
Electric Conductivity |
The ability of a substrate to allow the passage of ELECTRONS. |
Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical |
|
| D001665 |
Binding Sites |
The parts of a macromolecule that directly participate in its specific combination with another molecule. |
Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining |
|
| D001693 |
Biological Transport, Active |
The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. |
Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill |
|
| D013997 |
Time Factors |
Elements of limited time intervals, contributing to particular results or situations. |
Time Series,Factor, Time,Time Factor |
|