Role of RNA in induction of hepatic microsomal mixed function oxidases. 1974

S T Jacob, and M B Scharf, and E S Vessel

Induction of hepatic microsomal cytochrome P-450 and ethylmorphine N-demethylase activity by phenobarbital requires de novo synthesis of mRNA. Inhibition of RNA synthesis by alpha-amanitin given up to 8 hr after phenobarbital administration substantially inhibits this induction. However, beyond 8 hr after phenobarbital administration, RNA synthesis is not required for induction of these hepatic microsomal systems. Thus, mRNAs for cytochrome P-450 and ethylmorphine N-demethylase appear to be stable. Furthermore, these experiments reveal that the lag period for RNA synthesis approximates the length of the lag period for induction of the hepatic microsomal enzyme systems.

UI MeSH Term Description Entries
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009019 Morphinans Compounds based on a partially saturated iminoethanophenanthrene, which can be described as ethylimino-bridged benzo-decahydronaphthalenes. They include some of the OPIOIDS found in PAPAVER that are used as ANALGESICS. Morphinan
D009183 Mycotoxins Toxic compounds produced by FUNGI. Fungal Toxins,Mycotoxin,Toxins, Fungal
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010089 Oxidoreductases, N-Demethylating N-Demethylase,N-Demethylases,Oxidoreductases, N Demethylating,Demethylating Oxidoreductases, N,N Demethylase,N Demethylases,N Demethylating Oxidoreductases,N-Demethylating Oxidoreductases
D010456 Peptides, Cyclic Peptides whose amino acid residues are linked together forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS; some are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL). Circular Peptide,Cyclic Peptide,Cyclic Peptides,Cyclopeptide,Orbitide,Circular Peptides,Cyclopeptides,Orbitides,Peptide, Circular,Peptide, Cyclic,Peptides, Circular
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450

Related Publications

S T Jacob, and M B Scharf, and E S Vessel
October 1989, Toxicology letters,
S T Jacob, and M B Scharf, and E S Vessel
September 1970, Life sciences. Pt. 1: Physiology and pharmacology,
S T Jacob, and M B Scharf, and E S Vessel
January 1979, Journal of agricultural and food chemistry,
S T Jacob, and M B Scharf, and E S Vessel
January 1976, Biochemical pharmacology,
S T Jacob, and M B Scharf, and E S Vessel
January 1978, Experimental gerontology,
S T Jacob, and M B Scharf, and E S Vessel
November 1980, Experientia,
S T Jacob, and M B Scharf, and E S Vessel
January 1983, Acta physiologica Polonica,
S T Jacob, and M B Scharf, and E S Vessel
December 1973, The Journal of biological chemistry,
S T Jacob, and M B Scharf, and E S Vessel
December 1972, Environmental research,
S T Jacob, and M B Scharf, and E S Vessel
August 1995, Journal of veterinary pharmacology and therapeutics,
Copied contents to your clipboard!