Some biochemical properties of thymus leukemia antigens solubilized from cell membranes by papain digestion. 1973

T Muramatsu, and S G Nathenson, and E A Boyse, and L J Old

Thymus leukemia (TL) alloantigenic activity was solubilized by papain proteolytic digestion from intact RADA1 tumor cells. If the cells were labeled with amino acids and fucose, the TL alloantigen could be isolated as a doubly labeled glycoprotein fragment by indirect precipitation from the papain digest. This TL glycoprotein fragment was approximately the same mol wt as the papain-digested H-2.4 alloantigen fragment as judged by chromatography on Sephadex G-150 in sodium dodecyl sulfate. The carbohydrate chain of the TL glycoprotein obtained by exhaustive pronase digestion behaved as a glycopeptide of approximately 4,500 mol wt, as compared with the glycopeptide of the H-2.4 alloantigen that had a mol wt of about 3,500. Thus, the TL alloantigen can be solubilized by papain digestion as a glycoprotein fragment similar in mol wt to the H-2 alloantigen glycoprotein fragment. The carbohydrate chain of the TL glycoprotein is larger than the H-2 carbohydrate chain.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D007519 Isoantigens Antigens that exist in alternative (allelic) forms in a single species. When an isoantigen is encountered by species members who lack it, an immune response is induced. Typical isoantigens are the BLOOD GROUP ANTIGENS. Alloantigens,Alloantigen,Isoantigen
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D007942 Leukemia, Experimental Leukemia induced experimentally in animals by exposure to leukemogenic agents, such as VIRUSES; RADIATION; or by TRANSPLANTATION of leukemic tissues. Experimental Leukemia,Experimental Leukemias,Leukemia Model, Animal,Leukemias, Experimental,Animal Leukemia Model,Animal Leukemia Models,Leukemia Models, Animal
D007953 Leukemia, Radiation-Induced Leukemia produced by exposure to IONIZING RADIATION or NON-IONIZING RADIATION. Radiation-Induced Leukemia,Leukemia, Radiation Induced,Leukemias, Radiation-Induced,Radiation Induced Leukemia,Radiation-Induced Leukemias
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010206 Papain A proteolytic enzyme obtained from Carica papaya. It is also the name used for a purified mixture of papain and CHYMOPAPAIN that is used as a topical enzymatic debriding agent. EC 3.4.22.2. Tromasin
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography

Related Publications

T Muramatsu, and S G Nathenson, and E A Boyse, and L J Old
September 1979, Tissue antigens,
T Muramatsu, and S G Nathenson, and E A Boyse, and L J Old
March 1976, European journal of immunology,
T Muramatsu, and S G Nathenson, and E A Boyse, and L J Old
January 1980, Journal of immunological methods,
T Muramatsu, and S G Nathenson, and E A Boyse, and L J Old
May 1979, Biochemistry,
T Muramatsu, and S G Nathenson, and E A Boyse, and L J Old
March 1971, Transplantation proceedings,
T Muramatsu, and S G Nathenson, and E A Boyse, and L J Old
July 1984, FEBS letters,
T Muramatsu, and S G Nathenson, and E A Boyse, and L J Old
May 1979, Blood,
T Muramatsu, and S G Nathenson, and E A Boyse, and L J Old
January 1980, Scandinavian journal of immunology,
T Muramatsu, and S G Nathenson, and E A Boyse, and L J Old
March 1975, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
Copied contents to your clipboard!