Hapten-sandwich labeling. I. A general procedure for simultaneous labeling of multiple cell surface antigens for fluorescence and electron microscopy. 1974

L Wolfsy, and P C Baker, and K Thompson, and J Goodman, and J Kimura, and C Henry

A hapten-sandwich procedure has been developed for specific labeling of cell surface antigens for fluorescence or electron microscopy. Haptens are azo-coupled to immunoglobulins specific for a cell surface antigen; the hapten-modified cell-bound antibodies can then be visualized by adding fluorescent antihapten antibody, or by adding antihapten antibody followed by hapten-modified markers for electron microscopy. Virus or high molecular weight protein markers are lightly cross-linked before conjugation with hapten to prevent their disruption. Such stable hapten-modified markers, and the accessibility of many different purified anti-azophenyl-hapten antibodies, make it feasible to distinguish more than one membrane antigen in a given labeling experiment. When mouse lymphoid cell populations are labeled with separate markers for Ig and for thymus-associated antigens, many cells exhibit the Ig marker exclusively or the thymic marker predominantly, and some cells are completely free of label.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007136 Immunoglobulins Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses. Globulins, Immune,Immune Globulin,Immune Globulins,Immunoglobulin,Globulin, Immune
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D007785 Lactose A disaccharide of GLUCOSE and GALACTOSE in human and cow milk. It is used in pharmacy for tablets, in medicine as a nutrient, and in industry. Anhydrous Lactose,Lactose, Anhydrous
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D008974 Mollusca A phylum of the kingdom Metazoa. Mollusca have soft, unsegmented bodies with an anterior head, a dorsal visceral mass, and a ventral foot. Most are encased in a protective calcareous shell. It includes the classes GASTROPODA; BIVALVIA; CEPHALOPODA; Aplacophora; Scaphopoda; Polyplacophora; and Monoplacophora. Molluscs,Mollusks,Mollusc,Molluscas,Mollusk

Related Publications

L Wolfsy, and P C Baker, and K Thompson, and J Goodman, and J Kimura, and C Henry
January 1978, Contemporary topics in molecular immunology,
L Wolfsy, and P C Baker, and K Thompson, and J Goodman, and J Kimura, and C Henry
November 1976, Journal of immunology (Baltimore, Md. : 1950),
L Wolfsy, and P C Baker, and K Thompson, and J Goodman, and J Kimura, and C Henry
February 1975, The Journal of cell biology,
L Wolfsy, and P C Baker, and K Thompson, and J Goodman, and J Kimura, and C Henry
January 1979, Journal of immunological methods,
L Wolfsy, and P C Baker, and K Thompson, and J Goodman, and J Kimura, and C Henry
December 1972, Proceedings of the National Academy of Sciences of the United States of America,
L Wolfsy, and P C Baker, and K Thompson, and J Goodman, and J Kimura, and C Henry
February 1989, Infection and immunity,
L Wolfsy, and P C Baker, and K Thompson, and J Goodman, and J Kimura, and C Henry
January 1979, Scanning electron microscopy,
L Wolfsy, and P C Baker, and K Thompson, and J Goodman, and J Kimura, and C Henry
May 2019, Nature neuroscience,
L Wolfsy, and P C Baker, and K Thompson, and J Goodman, and J Kimura, and C Henry
January 2001, Methods in molecular medicine,
L Wolfsy, and P C Baker, and K Thompson, and J Goodman, and J Kimura, and C Henry
January 1983, Methods in enzymology,
Copied contents to your clipboard!