Enzymic transfer of glucose and xylose from uridine diphosphate glucose and uridine diphosphate xylose to bilirubin by untreated and digitonin-activated preparations from rat liver. 1972

J Fevery, and P Leroy, and K P Heirwegh

1. Digitonin-treated and untreated homogenates, cell extracts and washed microsomal preparations from liver of Wistar R rats are capable of transferring sugar from UDP-glucose or UDP-xylose to bilirubin. No formation of bilirubin glycosides occurred with UDP-galactose or d-glucose, d-xylose or d-glucuronic acid as the sources of sugar. 2. Procedures to assay digitonin-activated and unactivated bilirubin UDP-glucosyltransferase and bilirubin UDP-xylosyltransferase were developed. 3. In digitonin-activated microsomal preparations the transferring enzymes had the following properties. Both enzyme activities were increased 2.5-fold by pretreatment with digitonin. They were optimum at pH6.6-7.2. Michaelis-Menten kinetics were followed with respect to UDP-glucose. In contrast, double-reciprocal plots of enzyme activity against the concentration of UDP-xylose showed two intersecting straight-line sections corresponding to concentration ranges where either bilirubin monoxyloside was formed (at low UDP-xylose concentrations) or where mixtures of both the mono- and di-xyloside were synthesized (at high UDP-xylose concentrations). Both enzyme activities were stimulated by Mg(2+); Ca(2+) was slightly less, and Mn(2+) slightly more, stimulatory than Mg(2+). Of the activities found in standard assay systems containing Mg(2+), 58-78% (substrate UDP-glucose) and 0-38% (substrate UDP-xylose) were independent of added bivalent metal ion. Double-reciprocal plots of the Mg(2+)-dependent activities against the concentration of added Mg(2+) were linear. 4. In comparative experiments the relative activities of liver homogenates obtained with UDP-glucuronic acid, UDP-glucose and UDP-xylose were 1:1.5:2.7 for untreated preparations and 1:0.29:0.44 after activation with digitonin. 5. Bilirubin UDP-glucuronyltransferase was protected against denaturation by human serum albumin, whereas bilirubin UDP-xylosyltransferase was not. 6. Digitonin-treated and untreated liver homogenates from Gunn rats were inactive in transferring sugar to bilirubin from UDP-glucuronic acid (in agreement with the work of others), UDP-glucose or UDP-xylose.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004072 Digitonin A glycoside obtained from Digitalis purpurea; the aglycone is digitogenin which is bound to five sugars. Digitonin solubilizes lipids, especially in membranes and is used as a tool in cellular biochemistry, and reagent for precipitating cholesterol. It has no cardiac effects. Digitin
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

J Fevery, and P Leroy, and K P Heirwegh
September 1972, The Biochemical journal,
J Fevery, and P Leroy, and K P Heirwegh
December 1972, Biochimica et biophysica acta,
J Fevery, and P Leroy, and K P Heirwegh
November 1966, Proceedings of the National Academy of Sciences of the United States of America,
J Fevery, and P Leroy, and K P Heirwegh
June 1967, Biochimica et biophysica acta,
J Fevery, and P Leroy, and K P Heirwegh
November 2014, Advanced synthesis & catalysis,
J Fevery, and P Leroy, and K P Heirwegh
October 1970, Science (New York, N.Y.),
J Fevery, and P Leroy, and K P Heirwegh
June 1956, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!